synapse.ml.cntk package
Submodules
synapse.ml.cntk.CNTKModel module
- class synapse.ml.cntk.CNTKModel.CNTKModel(java_obj=None, batchInput=True, convertOutputToDenseVector=True, feedDict={'ARGUMENT_0': 'ARGUMENT_0'}, fetchDict={'OUTPUT_0': 'OUTPUT_0'}, miniBatcher=None, model=None)[source]
Bases:
synapse.ml.cntk._CNTKModel._CNTKModel
- Parameters
SparkSession (SparkSession) – The SparkSession that will be used to find the model
location (str) – The location of the model, either on local or HDFS
- setFeedDict(dict)[source]
- Parameters
feedDict – Provide a map from CNTK/ONNX model input variable names (keys) to column names of the input dataframe (values)
synapse.ml.cntk.ImageFeaturizer module
- class synapse.ml.cntk.ImageFeaturizer.ImageFeaturizer(java_obj=None, cntkModel=None, cutOutputLayers=1, dropNa=True, inputCol=None, layerNames=None, outputCol='ImageFeaturizer_07941621e88a_output')[source]
Bases:
synapse.ml.cntk._ImageFeaturizer._ImageFeaturizer
- Parameters
SparkSession (SparkSession) – The SparkSession that will be used to find the model
ocation (str) – The location of the model, either on local or HDFS
Module contents
SynapseML is an ecosystem of tools aimed towards expanding the distributed computing framework Apache Spark in several new directions. SynapseML adds many deep learning and data science tools to the Spark ecosystem, including seamless integration of Spark Machine Learning pipelines with Microsoft Cognitive Toolkit (CNTK), LightGBM and OpenCV. These tools enable powerful and highly-scalable predictive and analytical models for a variety of datasources.
SynapseML also brings new networking capabilities to the Spark Ecosystem. With the HTTP on Spark project, users can embed any web service into their SparkML models. In this vein, SynapseML provides easy to use SparkML transformers for a wide variety of Microsoft Cognitive Services. For production grade deployment, the Spark Serving project enables high throughput, sub-millisecond latency web services, backed by your Spark cluster.
SynapseML requires Scala 2.12, Spark 3.0+, and Python 3.6+.