# Copyright (C) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See LICENSE in project root for information.
import sys
if sys.version >= '3':
basestring = str
from pyspark import SparkContext, SQLContext
from pyspark.sql import DataFrame
from pyspark.ml.param.shared import *
from pyspark import keyword_only
from pyspark.ml.util import JavaMLReadable, JavaMLWritable
from synapse.ml.core.serialize.java_params_patch import *
from pyspark.ml.wrapper import JavaTransformer, JavaEstimator, JavaModel
from pyspark.ml.evaluation import JavaEvaluator
from pyspark.ml.common import inherit_doc
from synapse.ml.core.schema.Utils import *
from pyspark.ml.param import TypeConverters
from synapse.ml.core.schema.TypeConversionUtils import generateTypeConverter, complexTypeConverter
from synapse.ml.featurize.CleanMissingDataModel import CleanMissingDataModel
[docs]@inherit_doc
class CleanMissingData(ComplexParamsMixin, JavaMLReadable, JavaMLWritable, JavaEstimator):
"""
Args:
cleaningMode (object): Cleaning mode
customValue (object): Custom value for replacement
inputCols (list): The names of the input columns
outputCols (list): The names of the output columns
"""
cleaningMode = Param(Params._dummy(), "cleaningMode", "Cleaning mode")
customValue = Param(Params._dummy(), "customValue", "Custom value for replacement")
inputCols = Param(Params._dummy(), "inputCols", "The names of the input columns", typeConverter=TypeConverters.toListString)
outputCols = Param(Params._dummy(), "outputCols", "The names of the output columns", typeConverter=TypeConverters.toListString)
@keyword_only
def __init__(
self,
java_obj=None,
cleaningMode="Mean",
customValue=None,
inputCols=None,
outputCols=None
):
super(CleanMissingData, self).__init__()
if java_obj is None:
self._java_obj = self._new_java_obj("com.microsoft.azure.synapse.ml.featurize.CleanMissingData", self.uid)
else:
self._java_obj = java_obj
self._setDefault(cleaningMode="Mean")
if hasattr(self, "_input_kwargs"):
kwargs = self._input_kwargs
else:
kwargs = self.__init__._input_kwargs
if java_obj is None:
for k,v in kwargs.items():
if v is not None:
getattr(self, "set" + k[0].upper() + k[1:])(v)
[docs] @keyword_only
def setParams(
self,
cleaningMode="Mean",
customValue=None,
inputCols=None,
outputCols=None
):
"""
Set the (keyword only) parameters
"""
if hasattr(self, "_input_kwargs"):
kwargs = self._input_kwargs
else:
kwargs = self.__init__._input_kwargs
return self._set(**kwargs)
[docs] @classmethod
def read(cls):
""" Returns an MLReader instance for this class. """
return JavaMMLReader(cls)
[docs] @staticmethod
def getJavaPackage():
""" Returns package name String. """
return "com.microsoft.azure.synapse.ml.featurize.CleanMissingData"
@staticmethod
def _from_java(java_stage):
module_name=CleanMissingData.__module__
module_name=module_name.rsplit(".", 1)[0] + ".CleanMissingData"
return from_java(java_stage, module_name)
[docs] def setCleaningMode(self, value):
"""
Args:
cleaningMode: Cleaning mode
"""
self._set(cleaningMode=value)
return self
[docs] def setCustomValue(self, value):
"""
Args:
customValue: Custom value for replacement
"""
self._set(customValue=value)
return self
[docs] def setOutputCols(self, value):
"""
Args:
outputCols: The names of the output columns
"""
self._set(outputCols=value)
return self
[docs] def getCleaningMode(self):
"""
Returns:
cleaningMode: Cleaning mode
"""
return self.getOrDefault(self.cleaningMode)
[docs] def getCustomValue(self):
"""
Returns:
customValue: Custom value for replacement
"""
return self.getOrDefault(self.customValue)
[docs] def getOutputCols(self):
"""
Returns:
outputCols: The names of the output columns
"""
return self.getOrDefault(self.outputCols)
def _create_model(self, java_model):
try:
model = CleanMissingDataModel(java_obj=java_model)
model._transfer_params_from_java()
except TypeError:
model = CleanMissingDataModel._from_java(java_model)
return model
def _fit(self, dataset):
java_model = self._fit_java(dataset)
return self._create_model(java_model)