# Copyright (C) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See LICENSE in project root for information.
import sys
if sys.version >= '3':
basestring = str
from pyspark import SparkContext, SQLContext
from pyspark.sql import DataFrame
from pyspark.ml.param.shared import *
from pyspark import keyword_only
from pyspark.ml.util import JavaMLReadable, JavaMLWritable
from synapse.ml.core.serialize.java_params_patch import *
from pyspark.ml.wrapper import JavaTransformer, JavaEstimator, JavaModel
from pyspark.ml.evaluation import JavaEvaluator
from pyspark.ml.common import inherit_doc
from synapse.ml.core.schema.Utils import *
from pyspark.ml.param import TypeConverters
from synapse.ml.core.schema.TypeConversionUtils import generateTypeConverter, complexTypeConverter
from pyspark.ml import PipelineModel
[docs]@inherit_doc
class Featurize(ComplexParamsMixin, JavaMLReadable, JavaMLWritable, JavaEstimator):
"""
Args:
imputeMissing (bool): Whether to impute missing values
inputCols (list): The names of the input columns
numFeatures (int): Number of features to hash string columns to
oneHotEncodeCategoricals (bool): One-hot encode categorical columns
outputCol (object): The name of the output column
"""
imputeMissing = Param(Params._dummy(), "imputeMissing", "Whether to impute missing values", typeConverter=TypeConverters.toBoolean)
inputCols = Param(Params._dummy(), "inputCols", "The names of the input columns", typeConverter=TypeConverters.toListString)
numFeatures = Param(Params._dummy(), "numFeatures", "Number of features to hash string columns to", typeConverter=TypeConverters.toInt)
oneHotEncodeCategoricals = Param(Params._dummy(), "oneHotEncodeCategoricals", "One-hot encode categorical columns", typeConverter=TypeConverters.toBoolean)
outputCol = Param(Params._dummy(), "outputCol", "The name of the output column")
@keyword_only
def __init__(
self,
java_obj=None,
imputeMissing=True,
inputCols=None,
numFeatures=262144,
oneHotEncodeCategoricals=True,
outputCol=None
):
super(Featurize, self).__init__()
if java_obj is None:
self._java_obj = self._new_java_obj("com.microsoft.azure.synapse.ml.featurize.Featurize", self.uid)
else:
self._java_obj = java_obj
self._setDefault(imputeMissing=True)
self._setDefault(numFeatures=262144)
self._setDefault(oneHotEncodeCategoricals=True)
if hasattr(self, "_input_kwargs"):
kwargs = self._input_kwargs
else:
kwargs = self.__init__._input_kwargs
if java_obj is None:
for k,v in kwargs.items():
if v is not None:
getattr(self, "set" + k[0].upper() + k[1:])(v)
[docs] @keyword_only
def setParams(
self,
imputeMissing=True,
inputCols=None,
numFeatures=262144,
oneHotEncodeCategoricals=True,
outputCol=None
):
"""
Set the (keyword only) parameters
"""
if hasattr(self, "_input_kwargs"):
kwargs = self._input_kwargs
else:
kwargs = self.__init__._input_kwargs
return self._set(**kwargs)
[docs] @classmethod
def read(cls):
""" Returns an MLReader instance for this class. """
return JavaMMLReader(cls)
[docs] @staticmethod
def getJavaPackage():
""" Returns package name String. """
return "com.microsoft.azure.synapse.ml.featurize.Featurize"
@staticmethod
def _from_java(java_stage):
module_name=Featurize.__module__
module_name=module_name.rsplit(".", 1)[0] + ".Featurize"
return from_java(java_stage, module_name)
[docs] def setImputeMissing(self, value):
"""
Args:
imputeMissing: Whether to impute missing values
"""
self._set(imputeMissing=value)
return self
[docs] def setNumFeatures(self, value):
"""
Args:
numFeatures: Number of features to hash string columns to
"""
self._set(numFeatures=value)
return self
[docs] def setOneHotEncodeCategoricals(self, value):
"""
Args:
oneHotEncodeCategoricals: One-hot encode categorical columns
"""
self._set(oneHotEncodeCategoricals=value)
return self
[docs] def setOutputCol(self, value):
"""
Args:
outputCol: The name of the output column
"""
self._set(outputCol=value)
return self
[docs] def getImputeMissing(self):
"""
Returns:
imputeMissing: Whether to impute missing values
"""
return self.getOrDefault(self.imputeMissing)
[docs] def getNumFeatures(self):
"""
Returns:
numFeatures: Number of features to hash string columns to
"""
return self.getOrDefault(self.numFeatures)
[docs] def getOneHotEncodeCategoricals(self):
"""
Returns:
oneHotEncodeCategoricals: One-hot encode categorical columns
"""
return self.getOrDefault(self.oneHotEncodeCategoricals)
[docs] def getOutputCol(self):
"""
Returns:
outputCol: The name of the output column
"""
return self.getOrDefault(self.outputCol)
def _create_model(self, java_model):
try:
model = PipelineModel(java_obj=java_model)
model._transfer_params_from_java()
except TypeError:
model = PipelineModel._from_java(java_model)
return model
def _fit(self, dataset):
java_model = self._fit_java(dataset)
return self._create_model(java_model)