synapse.ml.opencv package
Submodules
synapse.ml.opencv.ImageSetAugmenter module
- class synapse.ml.opencv.ImageSetAugmenter.ImageSetAugmenter(java_obj=None, flipLeftRight=True, flipUpDown=False, inputCol='image', outputCol='ImageSetAugmenter_024e984cc025_output')[source]
Bases:
synapse.ml.core.schema.Utils.ComplexParamsMixin
,pyspark.ml.util.JavaMLReadable
,pyspark.ml.util.JavaMLWritable
,pyspark.ml.wrapper.JavaTransformer
- Parameters
- flipLeftRight = Param(parent='undefined', name='flipLeftRight', doc='Symmetric Left-Right')
- flipUpDown = Param(parent='undefined', name='flipUpDown', doc='Symmetric Up-Down')
- inputCol = Param(parent='undefined', name='inputCol', doc='The name of the input column')
- outputCol = Param(parent='undefined', name='outputCol', doc='The name of the output column')
synapse.ml.opencv.ImageTransformer module
- class synapse.ml.opencv.ImageTransformer.ImageTransformer(java_obj=None, colorScaleFactor=None, inputCol='image', normalizeMean=None, normalizeStd=None, outputCol='ImageTransformer_fa997cec2d7c_output', stages=None, tensorChannelOrder='RGB', tensorElementType=None, toTensor=False)[source]
Bases:
synapse.ml.opencv._ImageTransformer._ImageTransformer
Transformer for common image processing stages.
- blur(height, width)[source]
Blurs the image using a normalized box filter
- Parameters
height (double) – The height of the box filter (>= 0)
width (double) – The width of the box filter (>= 0)
- colorFormat(format)[source]
Formats the image to the given image format
- Parameters
format (int) – The format to convert to, please see OpenCV cvtColor function documentation for all formats
- crop(x, y, height, width)[source]
Crops the image given the starting x,y coordinates and the width and height
- flip(flip_code=1)[source]
Flips the image :param int flip_code: a flag to specify how to flip the image - 0 means flipping around the x-axis (up-down) - positive value (for example, 1) means flipping around y-axis (left-right, default) - negative value (for example, -1) means flipping around both axes (diagonally) See OpenCV documentation for details.
- gaussianKernel(aperture_size, sigma)[source]
Blurs the image by applying a gaussian kernel
- Parameters
aperture_size (double) – The aperture size, which should be odd and positive
sigma (double) – The standard deviation of the gaussian
- normalize(mean, std, color_scale_factor)[source]
Normalizes the image by multiplying the color_scale_factor, substracting mean and dividing by std
- threshold(threshold, max_val, threshold_type)[source]
Thresholds the image, please see OpenCV threshold function documentation for more information
- Parameters
threshold – (double) The threshold value
max_val (double) – The maximum value to use
threshold_type (double) – The type of threshold, can be binary, binary_inv, trunc, zero, zero_inv
Module contents
SynapseML is an ecosystem of tools aimed towards expanding the distributed computing framework Apache Spark in several new directions. SynapseML adds many deep learning and data science tools to the Spark ecosystem, including seamless integration of Spark Machine Learning pipelines with Microsoft Cognitive Toolkit (CNTK), LightGBM and OpenCV. These tools enable powerful and highly-scalable predictive and analytical models for a variety of datasources.
SynapseML also brings new networking capabilities to the Spark Ecosystem. With the HTTP on Spark project, users can embed any web service into their SparkML models. In this vein, SynapseML provides easy to use SparkML transformers for a wide variety of Microsoft Cognitive Services. For production grade deployment, the Spark Serving project enables high throughput, sub-millisecond latency web services, backed by your Spark cluster.
SynapseML requires Scala 2.12, Spark 3.0+, and Python 3.6+.