synapse.ml.vw package
Submodules
synapse.ml.vw.VectorZipper module
- class synapse.ml.vw.VectorZipper.VectorZipper(java_obj=None, inputCols=None, outputCol=None)[source]
Bases:
synapse.ml.core.schema.Utils.ComplexParamsMixin
,pyspark.ml.util.JavaMLReadable
,pyspark.ml.util.JavaMLWritable
,pyspark.ml.wrapper.JavaTransformer
- Parameters
- inputCols = Param(parent='undefined', name='inputCols', doc='The names of the input columns')
- outputCol = Param(parent='undefined', name='outputCol', doc='The name of the output column')
synapse.ml.vw.VowpalWabbitClassificationModel module
- class synapse.ml.vw.VowpalWabbitClassificationModel.VowpalWabbitClassificationModel(java_obj=None, additionalFeatures=None, featuresCol='features', labelCol='label', model=None, performanceStatistics=None, predictionCol='prediction', probabilityCol='probability', rawPredictionCol='rawPrediction', testArgs='', thresholds=None)[source]
Bases:
synapse.ml.vw._VowpalWabbitClassificationModel._VowpalWabbitClassificationModel
synapse.ml.vw.VowpalWabbitClassifier module
- class synapse.ml.vw.VowpalWabbitClassifier.VowpalWabbitClassifier(java_obj=None, additionalFeatures=[], args='', featuresCol='features', hashSeed=0, ignoreNamespaces=None, initialModel=None, interactions=None, l1=None, l2=None, labelCol='label', labelConversion=True, learningRate=None, numBits=18, numPasses=1, powerT=None, predictionCol='prediction', probabilityCol='probability', rawPredictionCol='rawPrediction', thresholds=None, useBarrierExecutionMode=True, weightCol=None)[source]
Bases:
synapse.ml.vw._VowpalWabbitClassifier._VowpalWabbitClassifier
synapse.ml.vw.VowpalWabbitContextualBandit module
- class synapse.ml.vw.VowpalWabbitContextualBandit.VowpalWabbitContextualBandit(java_obj=None, additionalFeatures=[], additionalSharedFeatures=[], args='', chosenActionCol='chosenAction', epsilon=0.05, featuresCol='features', hashSeed=0, ignoreNamespaces=None, initialModel=None, interactions=None, l1=None, l2=None, labelCol='label', learningRate=None, numBits=18, numPasses=1, parallelism=1, powerT=None, predictionCol='prediction', probabilityCol='probability', sharedCol='shared', useBarrierExecutionMode=True, weightCol=None)[source]
Bases:
synapse.ml.vw._VowpalWabbitContextualBandit._VowpalWabbitContextualBandit
synapse.ml.vw.VowpalWabbitContextualBanditModel module
- class synapse.ml.vw.VowpalWabbitContextualBanditModel.VowpalWabbitContextualBanditModel(java_obj=None, additionalFeatures=[], additionalSharedFeatures=[], args='', featuresCol='features', hashSeed=0, ignoreNamespaces=None, initialModel=None, interactions=None, l1=None, l2=None, labelCol='label', learningRate=None, model=None, numBits=18, numPasses=1, performanceStatistics=None, powerT=None, predictionCol='prediction', rawPredictionCol='rawPrediction', sharedCol='shared', testArgs='', useBarrierExecutionMode=True, weightCol=None)[source]
Bases:
synapse.ml.vw._VowpalWabbitContextualBanditModel._VowpalWabbitContextualBanditModel
synapse.ml.vw.VowpalWabbitFeaturizer module
- class synapse.ml.vw.VowpalWabbitFeaturizer.VowpalWabbitFeaturizer(java_obj=None, inputCols=[], numBits=30, outputCol='features', prefixStringsWithColumnName=True, preserveOrderNumBits=0, seed=0, stringSplitInputCols=[], sumCollisions=True)[source]
Bases:
synapse.ml.core.schema.Utils.ComplexParamsMixin
,pyspark.ml.util.JavaMLReadable
,pyspark.ml.util.JavaMLWritable
,pyspark.ml.wrapper.JavaTransformer
- Parameters
inputCols (list) – The names of the input columns
numBits (int) – Number of bits used to mask
outputCol (object) – The name of the output column
prefixStringsWithColumnName (bool) – Prefix string features with column name
preserveOrderNumBits (int) – Number of bits used to preserve the feature order. This will reduce the hash size. Needs to be large enough to fit count the maximum number of words
seed (int) – Hash seed
stringSplitInputCols (list) – Input cols that should be split at word boundaries
sumCollisions (bool) – Sums collisions if true, otherwise removes them
- getPrefixStringsWithColumnName()[source]
- Returns
Prefix string features with column name
- Return type
prefixStringsWithColumnName
- getPreserveOrderNumBits()[source]
- Returns
Number of bits used to preserve the feature order. This will reduce the hash size. Needs to be large enough to fit count the maximum number of words
- Return type
preserveOrderNumBits
- getStringSplitInputCols()[source]
- Returns
Input cols that should be split at word boundaries
- Return type
stringSplitInputCols
- getSumCollisions()[source]
- Returns
Sums collisions if true, otherwise removes them
- Return type
sumCollisions
- inputCols = Param(parent='undefined', name='inputCols', doc='The names of the input columns')
- numBits = Param(parent='undefined', name='numBits', doc='Number of bits used to mask')
- outputCol = Param(parent='undefined', name='outputCol', doc='The name of the output column')
- prefixStringsWithColumnName = Param(parent='undefined', name='prefixStringsWithColumnName', doc='Prefix string features with column name')
- preserveOrderNumBits = Param(parent='undefined', name='preserveOrderNumBits', doc='Number of bits used to preserve the feature order. This will reduce the hash size. Needs to be large enough to fit count the maximum number of words')
- seed = Param(parent='undefined', name='seed', doc='Hash seed')
- setParams(inputCols=[], numBits=30, outputCol='features', prefixStringsWithColumnName=True, preserveOrderNumBits=0, seed=0, stringSplitInputCols=[], sumCollisions=True)[source]
Set the (keyword only) parameters
- setPrefixStringsWithColumnName(value)[source]
- Parameters
prefixStringsWithColumnName – Prefix string features with column name
- setPreserveOrderNumBits(value)[source]
- Parameters
preserveOrderNumBits – Number of bits used to preserve the feature order. This will reduce the hash size. Needs to be large enough to fit count the maximum number of words
- setStringSplitInputCols(value)[source]
- Parameters
stringSplitInputCols – Input cols that should be split at word boundaries
- setSumCollisions(value)[source]
- Parameters
sumCollisions – Sums collisions if true, otherwise removes them
- stringSplitInputCols = Param(parent='undefined', name='stringSplitInputCols', doc='Input cols that should be split at word boundaries')
- sumCollisions = Param(parent='undefined', name='sumCollisions', doc='Sums collisions if true, otherwise removes them')
synapse.ml.vw.VowpalWabbitInteractions module
- class synapse.ml.vw.VowpalWabbitInteractions.VowpalWabbitInteractions(java_obj=None, inputCols=None, numBits=30, outputCol=None, sumCollisions=True)[source]
Bases:
synapse.ml.core.schema.Utils.ComplexParamsMixin
,pyspark.ml.util.JavaMLReadable
,pyspark.ml.util.JavaMLWritable
,pyspark.ml.wrapper.JavaTransformer
- Parameters
- getSumCollisions()[source]
- Returns
Sums collisions if true, otherwise removes them
- Return type
sumCollisions
- inputCols = Param(parent='undefined', name='inputCols', doc='The names of the input columns')
- numBits = Param(parent='undefined', name='numBits', doc='Number of bits used to mask')
- outputCol = Param(parent='undefined', name='outputCol', doc='The name of the output column')
- setParams(inputCols=None, numBits=30, outputCol=None, sumCollisions=True)[source]
Set the (keyword only) parameters
- setSumCollisions(value)[source]
- Parameters
sumCollisions – Sums collisions if true, otherwise removes them
- sumCollisions = Param(parent='undefined', name='sumCollisions', doc='Sums collisions if true, otherwise removes them')
synapse.ml.vw.VowpalWabbitRegressionModel module
- class synapse.ml.vw.VowpalWabbitRegressionModel.VowpalWabbitRegressionModel(java_obj=None, additionalFeatures=None, featuresCol='features', labelCol='label', model=None, performanceStatistics=None, predictionCol='prediction', rawPredictionCol='rawPrediction', testArgs='')[source]
Bases:
synapse.ml.vw._VowpalWabbitRegressionModel._VowpalWabbitRegressionModel
synapse.ml.vw.VowpalWabbitRegressor module
- class synapse.ml.vw.VowpalWabbitRegressor.VowpalWabbitRegressor(java_obj=None, additionalFeatures=[], args='', featuresCol='features', hashSeed=0, ignoreNamespaces=None, initialModel=None, interactions=None, l1=None, l2=None, labelCol='label', learningRate=None, numBits=18, numPasses=1, powerT=None, predictionCol='prediction', useBarrierExecutionMode=True, weightCol=None)[source]
Bases:
synapse.ml.vw._VowpalWabbitRegressor._VowpalWabbitRegressor
Module contents
SynapseML is an ecosystem of tools aimed towards expanding the distributed computing framework Apache Spark in several new directions. SynapseML adds many deep learning and data science tools to the Spark ecosystem, including seamless integration of Spark Machine Learning pipelines with Microsoft Cognitive Toolkit (CNTK), LightGBM and OpenCV. These tools enable powerful and highly-scalable predictive and analytical models for a variety of datasources.
SynapseML also brings new networking capabilities to the Spark Ecosystem. With the HTTP on Spark project, users can embed any web service into their SparkML models. In this vein, SynapseML provides easy to use SparkML transformers for a wide variety of Microsoft Cognitive Services. For production grade deployment, the Spark Serving project enables high throughput, sub-millisecond latency web services, backed by your Spark cluster.
SynapseML requires Scala 2.12, Spark 3.0+, and Python 3.6+.