Source code for mmlspark.stages.EnsembleByKey

# Copyright (C) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See LICENSE in project root for information.


import sys
if sys.version >= '3':
    basestring = str

from pyspark.ml.param.shared import *
from pyspark import keyword_only
from pyspark.ml.util import JavaMLReadable, JavaMLWritable
from mmlspark.core.serialize.java_params_patch import *
from pyspark.ml.wrapper import JavaTransformer, JavaEstimator, JavaModel
from pyspark.ml.common import inherit_doc
from mmlspark.core.schema.Utils import *

[docs]@inherit_doc class EnsembleByKey(ComplexParamsMixin, JavaMLReadable, JavaMLWritable, JavaTransformer): """ Args: colNames (list): Names of the result of each col collapseGroup (bool): Whether to collapse all items in group to one entry (default: true) cols (list): Cols to ensemble keys (list): Keys to group by strategy (str): How to ensemble the scores, ex: mean (default: mean) vectorDims (dict): the dimensions of any vector columns, used to avoid materialization """ @keyword_only def __init__(self, colNames=None, collapseGroup=True, cols=None, keys=None, strategy="mean", vectorDims=None): super(EnsembleByKey, self).__init__() self._java_obj = self._new_java_obj("com.microsoft.ml.spark.stages.EnsembleByKey") self.colNames = Param(self, "colNames", "colNames: Names of the result of each col") self.collapseGroup = Param(self, "collapseGroup", "collapseGroup: Whether to collapse all items in group to one entry (default: true)") self._setDefault(collapseGroup=True) self.cols = Param(self, "cols", "cols: Cols to ensemble") self.keys = Param(self, "keys", "keys: Keys to group by") self.strategy = Param(self, "strategy", "strategy: How to ensemble the scores, ex: mean (default: mean)") self._setDefault(strategy="mean") self.vectorDims = Param(self, "vectorDims", "vectorDims: the dimensions of any vector columns, used to avoid materialization") if hasattr(self, "_input_kwargs"): kwargs = self._input_kwargs else: kwargs = self.__init__._input_kwargs self.setParams(**kwargs)
[docs] @keyword_only def setParams(self, colNames=None, collapseGroup=True, cols=None, keys=None, strategy="mean", vectorDims=None): """ Set the (keyword only) parameters Args: colNames (list): Names of the result of each col collapseGroup (bool): Whether to collapse all items in group to one entry (default: true) cols (list): Cols to ensemble keys (list): Keys to group by strategy (str): How to ensemble the scores, ex: mean (default: mean) vectorDims (dict): the dimensions of any vector columns, used to avoid materialization """ if hasattr(self, "_input_kwargs"): kwargs = self._input_kwargs else: kwargs = self.__init__._input_kwargs return self._set(**kwargs)
[docs] def setColNames(self, value): """ Args: colNames (list): Names of the result of each col """ self._set(colNames=value) return self
[docs] def getColNames(self): """ Returns: list: Names of the result of each col """ return self.getOrDefault(self.colNames)
[docs] def setCollapseGroup(self, value): """ Args: collapseGroup (bool): Whether to collapse all items in group to one entry (default: true) """ self._set(collapseGroup=value) return self
[docs] def getCollapseGroup(self): """ Returns: bool: Whether to collapse all items in group to one entry (default: true) """ return self.getOrDefault(self.collapseGroup)
[docs] def setCols(self, value): """ Args: cols (list): Cols to ensemble """ self._set(cols=value) return self
[docs] def getCols(self): """ Returns: list: Cols to ensemble """ return self.getOrDefault(self.cols)
[docs] def setKeys(self, value): """ Args: keys (list): Keys to group by """ self._set(keys=value) return self
[docs] def getKeys(self): """ Returns: list: Keys to group by """ return self.getOrDefault(self.keys)
[docs] def setStrategy(self, value): """ Args: strategy (str): How to ensemble the scores, ex: mean (default: mean) """ self._set(strategy=value) return self
[docs] def getStrategy(self): """ Returns: str: How to ensemble the scores, ex: mean (default: mean) """ return self.getOrDefault(self.strategy)
[docs] def setVectorDims(self, value): """ Args: vectorDims (dict): the dimensions of any vector columns, used to avoid materialization """ self._set(vectorDims=value) return self
[docs] def getVectorDims(self): """ Returns: dict: the dimensions of any vector columns, used to avoid materialization """ return self.getOrDefault(self.vectorDims)
[docs] @classmethod def read(cls): """ Returns an MLReader instance for this class. """ return JavaMMLReader(cls)
[docs] @staticmethod def getJavaPackage(): """ Returns package name String. """ return "com.microsoft.ml.spark.stages.EnsembleByKey"
@staticmethod def _from_java(java_stage): module_name=EnsembleByKey.__module__ module_name=module_name.rsplit(".", 1)[0] + ".EnsembleByKey" return from_java(java_stage, module_name)