Source code for mmlspark.stages.Lambda

# Copyright (C) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See LICENSE in project root for information.


import sys
if sys.version >= '3':
    basestring = str

from pyspark.ml.param.shared import *
from pyspark import keyword_only
from pyspark.ml.util import JavaMLReadable, JavaMLWritable
from mmlspark.core.serialize.java_params_patch import *
from pyspark.ml.wrapper import JavaTransformer, JavaEstimator, JavaModel
from pyspark.ml.common import inherit_doc
from mmlspark.core.schema.Utils import *
from mmlspark.core.schema.TypeConversionUtils import generateTypeConverter, complexTypeConverter

[docs]@inherit_doc class Lambda(ComplexParamsMixin, JavaMLReadable, JavaMLWritable, JavaTransformer): """ Args: transformFunc (object): holder for dataframe function transformSchemaFunc (object): the output schema after the transformation """ @keyword_only def __init__(self, transformFunc=None, transformSchemaFunc=None): super(Lambda, self).__init__() self._java_obj = self._new_java_obj("com.microsoft.ml.spark.stages.Lambda") self._cache = {} self.transformFunc = Param(self, "transformFunc", "transformFunc: holder for dataframe function", generateTypeConverter("transformFunc", self._cache, complexTypeConverter)) self.transformSchemaFunc = Param(self, "transformSchemaFunc", "transformSchemaFunc: the output schema after the transformation", generateTypeConverter("transformSchemaFunc", self._cache, complexTypeConverter)) if hasattr(self, "_input_kwargs"): kwargs = self._input_kwargs else: kwargs = self.__init__._input_kwargs self.setParams(**kwargs)
[docs] @keyword_only def setParams(self, transformFunc=None, transformSchemaFunc=None): """ Set the (keyword only) parameters Args: transformFunc (object): holder for dataframe function transformSchemaFunc (object): the output schema after the transformation """ if hasattr(self, "_input_kwargs"): kwargs = self._input_kwargs else: kwargs = self.__init__._input_kwargs return self._set(**kwargs)
[docs] def setTransformFunc(self, value): """ Args: transformFunc (object): holder for dataframe function """ self._set(transformFunc=value) return self
[docs] def getTransformFunc(self): """ Returns: object: holder for dataframe function """ return self._cache.get("transformFunc", None)
[docs] def setTransformSchemaFunc(self, value): """ Args: transformSchemaFunc (object): the output schema after the transformation """ self._set(transformSchemaFunc=value) return self
[docs] def getTransformSchemaFunc(self): """ Returns: object: the output schema after the transformation """ return self._cache.get("transformSchemaFunc", None)
[docs] @classmethod def read(cls): """ Returns an MLReader instance for this class. """ return JavaMMLReader(cls)
[docs] @staticmethod def getJavaPackage(): """ Returns package name String. """ return "com.microsoft.ml.spark.stages.Lambda"
@staticmethod def _from_java(java_stage): module_name=Lambda.__module__ module_name=module_name.rsplit(".", 1)[0] + ".Lambda" return from_java(java_stage, module_name)