The name of the features column
The name of the features column
Fits the classification model.
Fits the classification model.
The input dataset to train.
The trained classification model.
The name of the label column
The name of the label column
Specifies the labels metadata on the column.
Specifies the labels metadata on the column. See class documentation for how this parameter interacts with reindex labels parameter.
Model to run.
Model to run. See doc on derived classes.
Doc for model to run.
Doc for model to run.
Number of features to hash to
Number of features to hash to
Specifies whether to reindex the given label column.
Specifies whether to reindex the given label column. See class documentation for how this parameter interacts with specified labels.
Trains a classification model. Featurizes the given data into a vector of doubles.
Note the behavior of the reindex and labels parameters, the parameters interact as:
reindex -> false labels -> false (Empty) Assume all double values, don't use metadata, assume natural ordering
reindex -> true labels -> false (Empty) Index, use natural ordering of string indexer
reindex -> false labels -> true (Specified) Assume user knows indexing, apply label values. Currently only string type supported.
reindex -> true labels -> true (Specified) Validate labels matches column type, try to recast to label type, reindex label column
The currently supported classifiers are: Logistic Regression Classifier Decision Tree Classifier Random Forest Classifier Gradient Boosted Trees Classifier Naive Bayes Classifier Multilayer Perceptron Classifier In addition to any generic learner that inherits from Predictor.