mmlspark.cyber.feature package

Submodules

mmlspark.cyber.feature.indexers module

class mmlspark.cyber.feature.indexers.IdIndexer(input_col: str, partition_key: str, output_col: str, reset_per_partition: bool)[source]

Bases: pyspark.ml.base.Estimator, pyspark.ml.param.shared.HasInputCol, pyspark.ml.param.shared.HasOutputCol

partitionKey = Param(parent='undefined', name='partitionKey', doc='The name of the column to partition by, i.e., make sure the indexing takes the partition into account. This is exemplified in reset_per_partition.')
resetPerPartition = Param(parent='undefined', name='resetPerPartition', doc='When set to True then indexing is consecutive from [1..n] for each value of the partition column. When set to False then indexing is consecutive for all partition and column values.')
class mmlspark.cyber.feature.indexers.IdIndexerModel(input_col: str, partition_key: str, output_col: str, vocab_df: pyspark.sql.dataframe.DataFrame)[source]

Bases: pyspark.ml.base.Transformer, pyspark.ml.param.shared.HasInputCol, pyspark.ml.param.shared.HasOutputCol

partitionKey = Param(parent='undefined', name='partitionKey', doc='The name of the column to partition by, i.e., make sure the indexing takes the partition into account. This is exemplified in reset_per_partition.')
undo_transform(df: pyspark.sql.dataframe.DataFrame) → pyspark.sql.dataframe.DataFrame[source]
class mmlspark.cyber.feature.indexers.MultiIndexer(indexers: List[mmlspark.cyber.feature.indexers.IdIndexer])[source]

Bases: pyspark.ml.base.Estimator

class mmlspark.cyber.feature.indexers.MultiIndexerModel(models: List[mmlspark.cyber.feature.indexers.IdIndexerModel])[source]

Bases: pyspark.ml.base.Transformer

get_model_by_input_col(input_col)[source]
get_model_by_output_col(output_col)[source]
undo_transform(df: pyspark.sql.dataframe.DataFrame) → pyspark.sql.dataframe.DataFrame[source]

mmlspark.cyber.feature.scalers module

class mmlspark.cyber.feature.scalers.LinearScalarScaler(input_col: str, partition_key: Optional[str], output_col: str, min_required_value: float = 0.0, max_required_value: float = 1.0, use_pandas: bool = True)[source]

Bases: mmlspark.cyber.feature.scalers.PerPartitionScalarScalerEstimator

maxRequiredValue = Param(parent='undefined', name='maxRequiredValue', doc='Scale the outputCol to have a value between [minRequiredValue, maxRequiredValue].')
minRequiredValue = Param(parent='undefined', name='minRequiredValue', doc='Scale the outputCol to have a value between [minRequiredValue, maxRequiredValue].')
class mmlspark.cyber.feature.scalers.LinearScalarScalerConfig[source]

Bases: object

max_actual_value_token = '__max_actual_value__'
min_actual_value_token = '__min_actual_value__'
class mmlspark.cyber.feature.scalers.LinearScalarScalerModel(input_col: str, partition_key: Optional[str], output_col: str, per_group_stats: Union[pyspark.sql.dataframe.DataFrame, Dict[str, float]], min_required_value: float, max_required_value: float, use_pandas: bool = True)[source]

Bases: mmlspark.cyber.feature.scalers.PerPartitionScalarScalerModel

class mmlspark.cyber.feature.scalers.PerPartitionScalarScalerEstimator(input_col: str, partition_key: Optional[str], output_col: str, use_pandas: bool = True)[source]

Bases: abc.ABC, pyspark.ml.base.Estimator, pyspark.ml.param.shared.HasInputCol, pyspark.ml.param.shared.HasOutputCol

partitionKey = Param(parent='undefined', name='partitionKey', doc='The name of the column to partition by, i.e., scale the values of inputCol within each partition. ')
property use_pandas
class mmlspark.cyber.feature.scalers.PerPartitionScalarScalerModel(input_col: str, partition_key: Optional[str], output_col: str, per_group_stats: Union[pyspark.sql.dataframe.DataFrame, Dict[str, float]], use_pandas: bool = True)[source]

Bases: abc.ABC, pyspark.ml.base.Transformer, pyspark.ml.param.shared.HasInputCol, pyspark.ml.param.shared.HasOutputCol

is_partitioned()bool[source]
partitionKey = Param(parent='undefined', name='partitionKey', doc='The name of the column to partition by, i.e., scale the values of inputCol within each partition. ')
property per_group_stats
property use_pandas
class mmlspark.cyber.feature.scalers.StandardScalarScaler(input_col: str, partition_key: Optional[str], output_col: str, coefficient_factor: float = 1.0, use_pandas: bool = True)[source]

Bases: mmlspark.cyber.feature.scalers.PerPartitionScalarScalerEstimator

coefficientFactor = Param(parent='undefined', name='coefficientFactor', doc='After scaling values of outputCol are multiplied by coefficient (defaults to 1.0). ')
class mmlspark.cyber.feature.scalers.StandardScalarScalerConfig[source]

Bases: object

The tokens to use for temporary representation of mean and standard deviation

mean_token = '__mean__'
std_token = '__std__'
class mmlspark.cyber.feature.scalers.StandardScalarScalerModel(input_col: str, partition_key: Optional[str], output_col: str, per_group_stats: Union[pyspark.sql.dataframe.DataFrame, Dict[str, float]], coefficient_factor: float = 1.0, use_pandas: bool = True)[source]

Bases: mmlspark.cyber.feature.scalers.PerPartitionScalarScalerModel

coefficientFactor = Param(parent='undefined', name='coefficientFactor', doc='After scaling values of outputCol are multiplied by coefficient (defaults to 1.0). ')

Module contents

MicrosoftML is a library of Python classes to interface with the Microsoft scala APIs to utilize Apache Spark to create distibuted machine learning models.

MicrosoftML simplifies training and scoring classifiers and regressors, as well as facilitating the creation of models using the CNTK library, images, and text.