Source code for synapse.ml.vw.VowpalWabbitCSETransformer
# Copyright (C) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See LICENSE in project root for information.
import sys
if sys.version >= '3':
basestring = str
from pyspark import SparkContext, SQLContext
from pyspark.sql import DataFrame
from pyspark.ml.param.shared import *
from pyspark import keyword_only
from pyspark.ml.util import JavaMLReadable, JavaMLWritable
from synapse.ml.core.platform import running_on_synapse_internal
from synapse.ml.core.serialize.java_params_patch import *
from pyspark.ml.wrapper import JavaTransformer, JavaEstimator, JavaModel
from pyspark.ml.evaluation import JavaEvaluator
from pyspark.ml.common import inherit_doc
from synapse.ml.core.schema.Utils import *
from pyspark.ml.param import TypeConverters
from synapse.ml.core.schema.TypeConversionUtils import generateTypeConverter, complexTypeConverter
[docs]@inherit_doc
class VowpalWabbitCSETransformer(ComplexParamsMixin, JavaMLReadable, JavaMLWritable, JavaTransformer):
"""
Args:
maxImportanceWeight (float): Clip importance weight at this upper bound. Defaults to 100.
metricsStratificationCols (list): Optional list of column names to stratify rewards by.
minImportanceWeight (float): Clip importance weight at this lower bound. Defaults to 0.
"""
maxImportanceWeight = Param(Params._dummy(), "maxImportanceWeight", "Clip importance weight at this upper bound. Defaults to 100.", typeConverter=TypeConverters.toFloat)
metricsStratificationCols = Param(Params._dummy(), "metricsStratificationCols", "Optional list of column names to stratify rewards by.", typeConverter=TypeConverters.toListString)
minImportanceWeight = Param(Params._dummy(), "minImportanceWeight", "Clip importance weight at this lower bound. Defaults to 0.", typeConverter=TypeConverters.toFloat)
@keyword_only
def __init__(
self,
java_obj=None,
maxImportanceWeight=100.0,
metricsStratificationCols=[],
minImportanceWeight=0.0
):
super(VowpalWabbitCSETransformer, self).__init__()
if java_obj is None:
self._java_obj = self._new_java_obj("com.microsoft.azure.synapse.ml.vw.VowpalWabbitCSETransformer", self.uid)
else:
self._java_obj = java_obj
self._setDefault(maxImportanceWeight=100.0)
self._setDefault(metricsStratificationCols=[])
self._setDefault(minImportanceWeight=0.0)
if hasattr(self, "_input_kwargs"):
kwargs = self._input_kwargs
else:
kwargs = self.__init__._input_kwargs
if java_obj is None:
for k,v in kwargs.items():
if v is not None:
getattr(self, "set" + k[0].upper() + k[1:])(v)
[docs] @keyword_only
def setParams(
self,
maxImportanceWeight=100.0,
metricsStratificationCols=[],
minImportanceWeight=0.0
):
"""
Set the (keyword only) parameters
"""
if hasattr(self, "_input_kwargs"):
kwargs = self._input_kwargs
else:
kwargs = self.__init__._input_kwargs
return self._set(**kwargs)
[docs] @classmethod
def read(cls):
""" Returns an MLReader instance for this class. """
return JavaMMLReader(cls)
[docs] @staticmethod
def getJavaPackage():
""" Returns package name String. """
return "com.microsoft.azure.synapse.ml.vw.VowpalWabbitCSETransformer"
@staticmethod
def _from_java(java_stage):
module_name=VowpalWabbitCSETransformer.__module__
module_name=module_name.rsplit(".", 1)[0] + ".VowpalWabbitCSETransformer"
return from_java(java_stage, module_name)
[docs] def setMaxImportanceWeight(self, value):
"""
Args:
maxImportanceWeight: Clip importance weight at this upper bound. Defaults to 100.
"""
self._set(maxImportanceWeight=value)
return self
[docs] def setMetricsStratificationCols(self, value):
"""
Args:
metricsStratificationCols: Optional list of column names to stratify rewards by.
"""
self._set(metricsStratificationCols=value)
return self
[docs] def setMinImportanceWeight(self, value):
"""
Args:
minImportanceWeight: Clip importance weight at this lower bound. Defaults to 0.
"""
self._set(minImportanceWeight=value)
return self
[docs] def getMaxImportanceWeight(self):
"""
Returns:
maxImportanceWeight: Clip importance weight at this upper bound. Defaults to 100.
"""
return self.getOrDefault(self.maxImportanceWeight)
[docs] def getMetricsStratificationCols(self):
"""
Returns:
metricsStratificationCols: Optional list of column names to stratify rewards by.
"""
return self.getOrDefault(self.metricsStratificationCols)
[docs] def getMinImportanceWeight(self):
"""
Returns:
minImportanceWeight: Clip importance weight at this lower bound. Defaults to 0.
"""
return self.getOrDefault(self.minImportanceWeight)