Source code for synapse.ml.vw.VowpalWabbitCSETransformer

# Copyright (C) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See LICENSE in project root for information.


import sys
if sys.version >= '3':
    basestring = str

from pyspark import SparkContext, SQLContext
from pyspark.sql import DataFrame
from pyspark.ml.param.shared import *
from pyspark import keyword_only
from pyspark.ml.util import JavaMLReadable, JavaMLWritable
from synapse.ml.core.platform import running_on_synapse_internal
from synapse.ml.core.serialize.java_params_patch import *
from pyspark.ml.wrapper import JavaTransformer, JavaEstimator, JavaModel
from pyspark.ml.evaluation import JavaEvaluator
from pyspark.ml.common import inherit_doc
from synapse.ml.core.schema.Utils import *
from pyspark.ml.param import TypeConverters
from synapse.ml.core.schema.TypeConversionUtils import generateTypeConverter, complexTypeConverter


[docs]@inherit_doc class VowpalWabbitCSETransformer(ComplexParamsMixin, JavaMLReadable, JavaMLWritable, JavaTransformer): """ Args: maxImportanceWeight (float): Clip importance weight at this upper bound. Defaults to 100. metricsStratificationCols (list): Optional list of column names to stratify rewards by. minImportanceWeight (float): Clip importance weight at this lower bound. Defaults to 0. """ maxImportanceWeight = Param(Params._dummy(), "maxImportanceWeight", "Clip importance weight at this upper bound. Defaults to 100.", typeConverter=TypeConverters.toFloat) metricsStratificationCols = Param(Params._dummy(), "metricsStratificationCols", "Optional list of column names to stratify rewards by.", typeConverter=TypeConverters.toListString) minImportanceWeight = Param(Params._dummy(), "minImportanceWeight", "Clip importance weight at this lower bound. Defaults to 0.", typeConverter=TypeConverters.toFloat) @keyword_only def __init__( self, java_obj=None, maxImportanceWeight=100.0, metricsStratificationCols=[], minImportanceWeight=0.0 ): super(VowpalWabbitCSETransformer, self).__init__() if java_obj is None: self._java_obj = self._new_java_obj("com.microsoft.azure.synapse.ml.vw.VowpalWabbitCSETransformer", self.uid) else: self._java_obj = java_obj self._setDefault(maxImportanceWeight=100.0) self._setDefault(metricsStratificationCols=[]) self._setDefault(minImportanceWeight=0.0) if hasattr(self, "_input_kwargs"): kwargs = self._input_kwargs else: kwargs = self.__init__._input_kwargs if java_obj is None: for k,v in kwargs.items(): if v is not None: getattr(self, "set" + k[0].upper() + k[1:])(v)
[docs] @keyword_only def setParams( self, maxImportanceWeight=100.0, metricsStratificationCols=[], minImportanceWeight=0.0 ): """ Set the (keyword only) parameters """ if hasattr(self, "_input_kwargs"): kwargs = self._input_kwargs else: kwargs = self.__init__._input_kwargs return self._set(**kwargs)
[docs] @classmethod def read(cls): """ Returns an MLReader instance for this class. """ return JavaMMLReader(cls)
[docs] @staticmethod def getJavaPackage(): """ Returns package name String. """ return "com.microsoft.azure.synapse.ml.vw.VowpalWabbitCSETransformer"
@staticmethod def _from_java(java_stage): module_name=VowpalWabbitCSETransformer.__module__ module_name=module_name.rsplit(".", 1)[0] + ".VowpalWabbitCSETransformer" return from_java(java_stage, module_name)
[docs] def setMaxImportanceWeight(self, value): """ Args: maxImportanceWeight: Clip importance weight at this upper bound. Defaults to 100. """ self._set(maxImportanceWeight=value) return self
[docs] def setMetricsStratificationCols(self, value): """ Args: metricsStratificationCols: Optional list of column names to stratify rewards by. """ self._set(metricsStratificationCols=value) return self
[docs] def setMinImportanceWeight(self, value): """ Args: minImportanceWeight: Clip importance weight at this lower bound. Defaults to 0. """ self._set(minImportanceWeight=value) return self
[docs] def getMaxImportanceWeight(self): """ Returns: maxImportanceWeight: Clip importance weight at this upper bound. Defaults to 100. """ return self.getOrDefault(self.maxImportanceWeight)
[docs] def getMetricsStratificationCols(self): """ Returns: metricsStratificationCols: Optional list of column names to stratify rewards by. """ return self.getOrDefault(self.metricsStratificationCols)
[docs] def getMinImportanceWeight(self): """ Returns: minImportanceWeight: Clip importance weight at this lower bound. Defaults to 0. """ return self.getOrDefault(self.minImportanceWeight)