Source code for synapse.ml.services.language.AnalyzeTextLongRunningOperations

# Copyright (C) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See LICENSE in project root for information.


import sys
if sys.version >= '3':
    basestring = str

from pyspark import SparkContext, SQLContext
from pyspark.sql import DataFrame
from pyspark.ml.param.shared import *
from pyspark import keyword_only
from pyspark.ml.util import JavaMLReadable, JavaMLWritable
from synapse.ml.core.platform import running_on_synapse_internal
from synapse.ml.core.serialize.java_params_patch import *
from pyspark.ml.wrapper import JavaTransformer, JavaEstimator, JavaModel
from pyspark.ml.evaluation import JavaEvaluator
from pyspark.ml.common import inherit_doc
from synapse.ml.core.schema.Utils import *
from pyspark.ml.param import TypeConverters
from synapse.ml.core.schema.TypeConversionUtils import generateTypeConverter, complexTypeConverter


[docs]@inherit_doc class AnalyzeTextLongRunningOperations(ComplexParamsMixin, JavaMLReadable, JavaMLWritable, JavaTransformer): """ Args: AADToken (object): AAD Token used for authentication CustomAuthHeader (object): A Custom Value for Authorization Header apiVersion (object): version of the api backoffs (list): array of backoffs to use in the handler batchSize (int): The max size of the buffer concurrency (int): max number of concurrent calls concurrentTimeout (float): max number seconds to wait on futures if concurrency >= 1 customHeaders (object): Map of Custom Header Key-Value Tuples. customUrlRoot (str): The custom URL root for the service. This will not append OpenAI specific model path completions (i.e. /chat/completions) to the URL. deploymentName (object): This field indicates the deployment name for the model. This is a required field. domain (object): The domain of the PII entity recognition request. errorCol (str): column to hold http errors excludeNormalizedValues (object): (Optional) request parameter that allows the user to provide settings for running the inference. If set to true, the service will exclude normalized exclusionList (object): (Optional) request parameter that filters out any entities that are included the excludeList. When a user specifies an excludeList, they cannot get a prediction returned with an entity in that list. We will apply inclusionList before exclusionList inclusionList (object): (Optional) request parameter that limits the output to the requested entity types included in this list. We will apply inclusionList before exclusionList initialPollingDelay (int): number of milliseconds to wait before first poll for result kind (str): Enumeration of supported Text Analysis tasks language (object): the language code of the text (optional for some services) loggingOptOut (object): loggingOptOut for task maxPollingRetries (int): number of times to poll modelVersion (object): Version of the model opinionMining (object): Whether to use opinion mining in the request or not. outputCol (str): The name of the output column overlapPolicy (object): (Optional) describes the type of overlap policy to apply to the ner output. piiCategories (object): describes the PII categories to return pollingDelay (int): number of milliseconds to wait between polling projectName (object): This field indicates the project name for the model. This is a required field sentenceCount (object): Specifies the number of sentences in the extracted summary. showStats (object): Whether to include detailed statistics in the response sortBy (object): Specifies how to sort the extracted summaries. This can be either 'Rank' or 'Offset'. stringIndexType (object): Specifies the method used to interpret string offsets. Defaults to Text Elements(Graphemes) according to Unicode v8.0.0.For more information see https://aka.ms/text-analytics-offsets subscriptionKey (object): the API key to use summaryLength (object): (NOTE: Recommended to use summaryLength over sentenceCount) Controls the approximate length of the output summaries. suppressMaxRetriesException (bool): set true to suppress the maxumimum retries exception and report in the error column text (object): the text in the request body timeout (float): number of seconds to wait before closing the connection url (str): Url of the service """ AADToken = Param(Params._dummy(), "AADToken", "ServiceParam: AAD Token used for authentication") CustomAuthHeader = Param(Params._dummy(), "CustomAuthHeader", "ServiceParam: A Custom Value for Authorization Header") apiVersion = Param(Params._dummy(), "apiVersion", "ServiceParam: version of the api") backoffs = Param(Params._dummy(), "backoffs", "array of backoffs to use in the handler", typeConverter=TypeConverters.toListInt) batchSize = Param(Params._dummy(), "batchSize", "The max size of the buffer", typeConverter=TypeConverters.toInt) concurrency = Param(Params._dummy(), "concurrency", "max number of concurrent calls", typeConverter=TypeConverters.toInt) concurrentTimeout = Param(Params._dummy(), "concurrentTimeout", "max number seconds to wait on futures if concurrency >= 1", typeConverter=TypeConverters.toFloat) customHeaders = Param(Params._dummy(), "customHeaders", "ServiceParam: Map of Custom Header Key-Value Tuples.") customUrlRoot = Param(Params._dummy(), "customUrlRoot", "The custom URL root for the service. This will not append OpenAI specific model path completions (i.e. /chat/completions) to the URL.", typeConverter=TypeConverters.toString) deploymentName = Param(Params._dummy(), "deploymentName", "ServiceParam: This field indicates the deployment name for the model. This is a required field.") domain = Param(Params._dummy(), "domain", "ServiceParam: The domain of the PII entity recognition request.") errorCol = Param(Params._dummy(), "errorCol", "column to hold http errors", typeConverter=TypeConverters.toString) excludeNormalizedValues = Param(Params._dummy(), "excludeNormalizedValues", "ServiceParam: (Optional) request parameter that allows the user to provide settings for running the inference. If set to true, the service will exclude normalized") exclusionList = Param(Params._dummy(), "exclusionList", "ServiceParam: (Optional) request parameter that filters out any entities that are included the excludeList. When a user specifies an excludeList, they cannot get a prediction returned with an entity in that list. We will apply inclusionList before exclusionList") inclusionList = Param(Params._dummy(), "inclusionList", "ServiceParam: (Optional) request parameter that limits the output to the requested entity types included in this list. We will apply inclusionList before exclusionList") initialPollingDelay = Param(Params._dummy(), "initialPollingDelay", "number of milliseconds to wait before first poll for result", typeConverter=TypeConverters.toInt) kind = Param(Params._dummy(), "kind", "Enumeration of supported Text Analysis tasks", typeConverter=TypeConverters.toString) language = Param(Params._dummy(), "language", "ServiceParam: the language code of the text (optional for some services)") loggingOptOut = Param(Params._dummy(), "loggingOptOut", "ServiceParam: loggingOptOut for task") maxPollingRetries = Param(Params._dummy(), "maxPollingRetries", "number of times to poll", typeConverter=TypeConverters.toInt) modelVersion = Param(Params._dummy(), "modelVersion", "ServiceParam: Version of the model") opinionMining = Param(Params._dummy(), "opinionMining", "ServiceParam: Whether to use opinion mining in the request or not.") outputCol = Param(Params._dummy(), "outputCol", "The name of the output column", typeConverter=TypeConverters.toString) overlapPolicy = Param(Params._dummy(), "overlapPolicy", "ServiceParam: (Optional) describes the type of overlap policy to apply to the ner output.") piiCategories = Param(Params._dummy(), "piiCategories", "ServiceParam: describes the PII categories to return") pollingDelay = Param(Params._dummy(), "pollingDelay", "number of milliseconds to wait between polling", typeConverter=TypeConverters.toInt) projectName = Param(Params._dummy(), "projectName", "ServiceParam: This field indicates the project name for the model. This is a required field") sentenceCount = Param(Params._dummy(), "sentenceCount", "ServiceParam: Specifies the number of sentences in the extracted summary.") showStats = Param(Params._dummy(), "showStats", "ServiceParam: Whether to include detailed statistics in the response") sortBy = Param(Params._dummy(), "sortBy", "ServiceParam: Specifies how to sort the extracted summaries. This can be either 'Rank' or 'Offset'.") stringIndexType = Param(Params._dummy(), "stringIndexType", "ServiceParam: Specifies the method used to interpret string offsets. Defaults to Text Elements(Graphemes) according to Unicode v8.0.0.For more information see https://aka.ms/text-analytics-offsets") subscriptionKey = Param(Params._dummy(), "subscriptionKey", "ServiceParam: the API key to use") summaryLength = Param(Params._dummy(), "summaryLength", "ServiceParam: (NOTE: Recommended to use summaryLength over sentenceCount) Controls the approximate length of the output summaries.") suppressMaxRetriesException = Param(Params._dummy(), "suppressMaxRetriesException", "set true to suppress the maxumimum retries exception and report in the error column", typeConverter=TypeConverters.toBoolean) text = Param(Params._dummy(), "text", "ServiceParam: the text in the request body") timeout = Param(Params._dummy(), "timeout", "number of seconds to wait before closing the connection", typeConverter=TypeConverters.toFloat) url = Param(Params._dummy(), "url", "Url of the service", typeConverter=TypeConverters.toString) @keyword_only def __init__( self, java_obj=None, AADToken=None, AADTokenCol=None, CustomAuthHeader=None, CustomAuthHeaderCol=None, apiVersion=None, apiVersionCol=None, backoffs=[100,500,1000], batchSize=10, concurrency=1, concurrentTimeout=None, customHeaders=None, customHeadersCol=None, customUrlRoot=None, deploymentName=None, deploymentNameCol=None, domain=None, domainCol=None, errorCol="AnalyzeTextLongRunningOperations_88fcc2f9ce87_error", excludeNormalizedValues=None, excludeNormalizedValuesCol=None, exclusionList=None, exclusionListCol=None, inclusionList=None, inclusionListCol=None, initialPollingDelay=300, kind=None, language=None, languageCol=None, loggingOptOut=None, loggingOptOutCol=None, maxPollingRetries=1000, modelVersion=None, modelVersionCol=None, opinionMining=None, opinionMiningCol=None, outputCol="AnalyzeTextLongRunningOperations_88fcc2f9ce87_output", overlapPolicy=None, overlapPolicyCol=None, piiCategories=None, piiCategoriesCol=None, pollingDelay=1000, projectName=None, projectNameCol=None, sentenceCount=None, sentenceCountCol=None, showStats=None, showStatsCol=None, sortBy=None, sortByCol=None, stringIndexType=None, stringIndexTypeCol=None, subscriptionKey=None, subscriptionKeyCol=None, summaryLength=None, summaryLengthCol=None, suppressMaxRetriesException=False, text=None, textCol=None, timeout=60.0, url=None ): super(AnalyzeTextLongRunningOperations, self).__init__() if java_obj is None: self._java_obj = self._new_java_obj("com.microsoft.azure.synapse.ml.services.language.AnalyzeTextLongRunningOperations", self.uid) else: self._java_obj = java_obj self._setDefault(backoffs=[100,500,1000]) self._setDefault(batchSize=10) self._setDefault(concurrency=1) self._setDefault(errorCol="AnalyzeTextLongRunningOperations_88fcc2f9ce87_error") self._setDefault(initialPollingDelay=300) self._setDefault(maxPollingRetries=1000) self._setDefault(outputCol="AnalyzeTextLongRunningOperations_88fcc2f9ce87_output") self._setDefault(pollingDelay=1000) self._setDefault(suppressMaxRetriesException=False) self._setDefault(timeout=60.0) if hasattr(self, "_input_kwargs"): kwargs = self._input_kwargs else: kwargs = self.__init__._input_kwargs if java_obj is None: for k,v in kwargs.items(): if v is not None: getattr(self, "set" + k[0].upper() + k[1:])(v)
[docs] @keyword_only def setParams( self, AADToken=None, AADTokenCol=None, CustomAuthHeader=None, CustomAuthHeaderCol=None, apiVersion=None, apiVersionCol=None, backoffs=[100,500,1000], batchSize=10, concurrency=1, concurrentTimeout=None, customHeaders=None, customHeadersCol=None, customUrlRoot=None, deploymentName=None, deploymentNameCol=None, domain=None, domainCol=None, errorCol="AnalyzeTextLongRunningOperations_88fcc2f9ce87_error", excludeNormalizedValues=None, excludeNormalizedValuesCol=None, exclusionList=None, exclusionListCol=None, inclusionList=None, inclusionListCol=None, initialPollingDelay=300, kind=None, language=None, languageCol=None, loggingOptOut=None, loggingOptOutCol=None, maxPollingRetries=1000, modelVersion=None, modelVersionCol=None, opinionMining=None, opinionMiningCol=None, outputCol="AnalyzeTextLongRunningOperations_88fcc2f9ce87_output", overlapPolicy=None, overlapPolicyCol=None, piiCategories=None, piiCategoriesCol=None, pollingDelay=1000, projectName=None, projectNameCol=None, sentenceCount=None, sentenceCountCol=None, showStats=None, showStatsCol=None, sortBy=None, sortByCol=None, stringIndexType=None, stringIndexTypeCol=None, subscriptionKey=None, subscriptionKeyCol=None, summaryLength=None, summaryLengthCol=None, suppressMaxRetriesException=False, text=None, textCol=None, timeout=60.0, url=None ): """ Set the (keyword only) parameters """ if hasattr(self, "_input_kwargs"): kwargs = self._input_kwargs else: kwargs = self.__init__._input_kwargs return self._set(**kwargs)
[docs] @classmethod def read(cls): """ Returns an MLReader instance for this class. """ return JavaMMLReader(cls)
[docs] @staticmethod def getJavaPackage(): """ Returns package name String. """ return "com.microsoft.azure.synapse.ml.services.language.AnalyzeTextLongRunningOperations"
@staticmethod def _from_java(java_stage): module_name=AnalyzeTextLongRunningOperations.__module__ module_name=module_name.rsplit(".", 1)[0] + ".AnalyzeTextLongRunningOperations" return from_java(java_stage, module_name)
[docs] def setAADToken(self, value): """ Args: AADToken: AAD Token used for authentication """ if isinstance(value, list): value = SparkContext._active_spark_context._jvm.com.microsoft.azure.synapse.ml.param.ServiceParam.toSeq(value) self._java_obj = self._java_obj.setAADToken(value) return self
[docs] def setAADTokenCol(self, value): """ Args: AADToken: AAD Token used for authentication """ self._java_obj = self._java_obj.setAADTokenCol(value) return self
[docs] def setCustomAuthHeader(self, value): """ Args: CustomAuthHeader: A Custom Value for Authorization Header """ if isinstance(value, list): value = SparkContext._active_spark_context._jvm.com.microsoft.azure.synapse.ml.param.ServiceParam.toSeq(value) self._java_obj = self._java_obj.setCustomAuthHeader(value) return self
[docs] def setCustomAuthHeaderCol(self, value): """ Args: CustomAuthHeader: A Custom Value for Authorization Header """ self._java_obj = self._java_obj.setCustomAuthHeaderCol(value) return self
[docs] def setApiVersion(self, value): """ Args: apiVersion: version of the api """ if isinstance(value, list): value = SparkContext._active_spark_context._jvm.com.microsoft.azure.synapse.ml.param.ServiceParam.toSeq(value) self._java_obj = self._java_obj.setApiVersion(value) return self
[docs] def setApiVersionCol(self, value): """ Args: apiVersion: version of the api """ self._java_obj = self._java_obj.setApiVersionCol(value) return self
[docs] def setBackoffs(self, value): """ Args: backoffs: array of backoffs to use in the handler """ self._set(backoffs=value) return self
[docs] def setBatchSize(self, value): """ Args: batchSize: The max size of the buffer """ self._set(batchSize=value) return self
[docs] def setConcurrency(self, value): """ Args: concurrency: max number of concurrent calls """ self._set(concurrency=value) return self
[docs] def setConcurrentTimeout(self, value): """ Args: concurrentTimeout: max number seconds to wait on futures if concurrency >= 1 """ self._set(concurrentTimeout=value) return self
[docs] def setCustomHeaders(self, value): """ Args: customHeaders: Map of Custom Header Key-Value Tuples. """ if isinstance(value, list): value = SparkContext._active_spark_context._jvm.com.microsoft.azure.synapse.ml.param.ServiceParam.toSeq(value) self._java_obj = self._java_obj.setCustomHeaders(value) return self
[docs] def setCustomHeadersCol(self, value): """ Args: customHeaders: Map of Custom Header Key-Value Tuples. """ self._java_obj = self._java_obj.setCustomHeadersCol(value) return self
[docs] def setCustomUrlRoot(self, value): """ Args: customUrlRoot: The custom URL root for the service. This will not append OpenAI specific model path completions (i.e. /chat/completions) to the URL. """ self._set(customUrlRoot=value) return self
[docs] def setDeploymentName(self, value): """ Args: deploymentName: This field indicates the deployment name for the model. This is a required field. """ if isinstance(value, list): value = SparkContext._active_spark_context._jvm.com.microsoft.azure.synapse.ml.param.ServiceParam.toSeq(value) self._java_obj = self._java_obj.setDeploymentName(value) return self
[docs] def setDeploymentNameCol(self, value): """ Args: deploymentName: This field indicates the deployment name for the model. This is a required field. """ self._java_obj = self._java_obj.setDeploymentNameCol(value) return self
[docs] def setDomain(self, value): """ Args: domain: The domain of the PII entity recognition request. """ if isinstance(value, list): value = SparkContext._active_spark_context._jvm.com.microsoft.azure.synapse.ml.param.ServiceParam.toSeq(value) self._java_obj = self._java_obj.setDomain(value) return self
[docs] def setDomainCol(self, value): """ Args: domain: The domain of the PII entity recognition request. """ self._java_obj = self._java_obj.setDomainCol(value) return self
[docs] def setErrorCol(self, value): """ Args: errorCol: column to hold http errors """ self._set(errorCol=value) return self
[docs] def setExcludeNormalizedValues(self, value): """ Args: excludeNormalizedValues: (Optional) request parameter that allows the user to provide settings for running the inference. If set to true, the service will exclude normalized """ if isinstance(value, list): value = SparkContext._active_spark_context._jvm.com.microsoft.azure.synapse.ml.param.ServiceParam.toSeq(value) self._java_obj = self._java_obj.setExcludeNormalizedValues(value) return self
[docs] def setExcludeNormalizedValuesCol(self, value): """ Args: excludeNormalizedValues: (Optional) request parameter that allows the user to provide settings for running the inference. If set to true, the service will exclude normalized """ self._java_obj = self._java_obj.setExcludeNormalizedValuesCol(value) return self
[docs] def setExclusionList(self, value): """ Args: exclusionList: (Optional) request parameter that filters out any entities that are included the excludeList. When a user specifies an excludeList, they cannot get a prediction returned with an entity in that list. We will apply inclusionList before exclusionList """ if isinstance(value, list): value = SparkContext._active_spark_context._jvm.com.microsoft.azure.synapse.ml.param.ServiceParam.toSeq(value) self._java_obj = self._java_obj.setExclusionList(value) return self
[docs] def setExclusionListCol(self, value): """ Args: exclusionList: (Optional) request parameter that filters out any entities that are included the excludeList. When a user specifies an excludeList, they cannot get a prediction returned with an entity in that list. We will apply inclusionList before exclusionList """ self._java_obj = self._java_obj.setExclusionListCol(value) return self
[docs] def setInclusionList(self, value): """ Args: inclusionList: (Optional) request parameter that limits the output to the requested entity types included in this list. We will apply inclusionList before exclusionList """ if isinstance(value, list): value = SparkContext._active_spark_context._jvm.com.microsoft.azure.synapse.ml.param.ServiceParam.toSeq(value) self._java_obj = self._java_obj.setInclusionList(value) return self
[docs] def setInclusionListCol(self, value): """ Args: inclusionList: (Optional) request parameter that limits the output to the requested entity types included in this list. We will apply inclusionList before exclusionList """ self._java_obj = self._java_obj.setInclusionListCol(value) return self
[docs] def setInitialPollingDelay(self, value): """ Args: initialPollingDelay: number of milliseconds to wait before first poll for result """ self._set(initialPollingDelay=value) return self
[docs] def setKind(self, value): """ Args: kind: Enumeration of supported Text Analysis tasks """ self._set(kind=value) return self
[docs] def setLanguage(self, value): """ Args: language: the language code of the text (optional for some services) """ if isinstance(value, list): value = SparkContext._active_spark_context._jvm.com.microsoft.azure.synapse.ml.param.ServiceParam.toSeq(value) self._java_obj = self._java_obj.setLanguage(value) return self
[docs] def setLanguageCol(self, value): """ Args: language: the language code of the text (optional for some services) """ self._java_obj = self._java_obj.setLanguageCol(value) return self
[docs] def setLoggingOptOut(self, value): """ Args: loggingOptOut: loggingOptOut for task """ if isinstance(value, list): value = SparkContext._active_spark_context._jvm.com.microsoft.azure.synapse.ml.param.ServiceParam.toSeq(value) self._java_obj = self._java_obj.setLoggingOptOut(value) return self
[docs] def setLoggingOptOutCol(self, value): """ Args: loggingOptOut: loggingOptOut for task """ self._java_obj = self._java_obj.setLoggingOptOutCol(value) return self
[docs] def setMaxPollingRetries(self, value): """ Args: maxPollingRetries: number of times to poll """ self._set(maxPollingRetries=value) return self
[docs] def setModelVersion(self, value): """ Args: modelVersion: Version of the model """ if isinstance(value, list): value = SparkContext._active_spark_context._jvm.com.microsoft.azure.synapse.ml.param.ServiceParam.toSeq(value) self._java_obj = self._java_obj.setModelVersion(value) return self
[docs] def setModelVersionCol(self, value): """ Args: modelVersion: Version of the model """ self._java_obj = self._java_obj.setModelVersionCol(value) return self
[docs] def setOpinionMining(self, value): """ Args: opinionMining: Whether to use opinion mining in the request or not. """ if isinstance(value, list): value = SparkContext._active_spark_context._jvm.com.microsoft.azure.synapse.ml.param.ServiceParam.toSeq(value) self._java_obj = self._java_obj.setOpinionMining(value) return self
[docs] def setOpinionMiningCol(self, value): """ Args: opinionMining: Whether to use opinion mining in the request or not. """ self._java_obj = self._java_obj.setOpinionMiningCol(value) return self
[docs] def setOutputCol(self, value): """ Args: outputCol: The name of the output column """ self._set(outputCol=value) return self
[docs] def setOverlapPolicy(self, value): """ Args: overlapPolicy: (Optional) describes the type of overlap policy to apply to the ner output. """ if isinstance(value, list): value = SparkContext._active_spark_context._jvm.com.microsoft.azure.synapse.ml.param.ServiceParam.toSeq(value) self._java_obj = self._java_obj.setOverlapPolicy(value) return self
[docs] def setOverlapPolicyCol(self, value): """ Args: overlapPolicy: (Optional) describes the type of overlap policy to apply to the ner output. """ self._java_obj = self._java_obj.setOverlapPolicyCol(value) return self
[docs] def setPiiCategories(self, value): """ Args: piiCategories: describes the PII categories to return """ if isinstance(value, list): value = SparkContext._active_spark_context._jvm.com.microsoft.azure.synapse.ml.param.ServiceParam.toSeq(value) self._java_obj = self._java_obj.setPiiCategories(value) return self
[docs] def setPiiCategoriesCol(self, value): """ Args: piiCategories: describes the PII categories to return """ self._java_obj = self._java_obj.setPiiCategoriesCol(value) return self
[docs] def setPollingDelay(self, value): """ Args: pollingDelay: number of milliseconds to wait between polling """ self._set(pollingDelay=value) return self
[docs] def setProjectName(self, value): """ Args: projectName: This field indicates the project name for the model. This is a required field """ if isinstance(value, list): value = SparkContext._active_spark_context._jvm.com.microsoft.azure.synapse.ml.param.ServiceParam.toSeq(value) self._java_obj = self._java_obj.setProjectName(value) return self
[docs] def setProjectNameCol(self, value): """ Args: projectName: This field indicates the project name for the model. This is a required field """ self._java_obj = self._java_obj.setProjectNameCol(value) return self
[docs] def setSentenceCount(self, value): """ Args: sentenceCount: Specifies the number of sentences in the extracted summary. """ if isinstance(value, list): value = SparkContext._active_spark_context._jvm.com.microsoft.azure.synapse.ml.param.ServiceParam.toSeq(value) self._java_obj = self._java_obj.setSentenceCount(value) return self
[docs] def setSentenceCountCol(self, value): """ Args: sentenceCount: Specifies the number of sentences in the extracted summary. """ self._java_obj = self._java_obj.setSentenceCountCol(value) return self
[docs] def setShowStats(self, value): """ Args: showStats: Whether to include detailed statistics in the response """ if isinstance(value, list): value = SparkContext._active_spark_context._jvm.com.microsoft.azure.synapse.ml.param.ServiceParam.toSeq(value) self._java_obj = self._java_obj.setShowStats(value) return self
[docs] def setShowStatsCol(self, value): """ Args: showStats: Whether to include detailed statistics in the response """ self._java_obj = self._java_obj.setShowStatsCol(value) return self
[docs] def setSortBy(self, value): """ Args: sortBy: Specifies how to sort the extracted summaries. This can be either 'Rank' or 'Offset'. """ if isinstance(value, list): value = SparkContext._active_spark_context._jvm.com.microsoft.azure.synapse.ml.param.ServiceParam.toSeq(value) self._java_obj = self._java_obj.setSortBy(value) return self
[docs] def setSortByCol(self, value): """ Args: sortBy: Specifies how to sort the extracted summaries. This can be either 'Rank' or 'Offset'. """ self._java_obj = self._java_obj.setSortByCol(value) return self
[docs] def setStringIndexType(self, value): """ Args: stringIndexType: Specifies the method used to interpret string offsets. Defaults to Text Elements(Graphemes) according to Unicode v8.0.0.For more information see https://aka.ms/text-analytics-offsets """ if isinstance(value, list): value = SparkContext._active_spark_context._jvm.com.microsoft.azure.synapse.ml.param.ServiceParam.toSeq(value) self._java_obj = self._java_obj.setStringIndexType(value) return self
[docs] def setStringIndexTypeCol(self, value): """ Args: stringIndexType: Specifies the method used to interpret string offsets. Defaults to Text Elements(Graphemes) according to Unicode v8.0.0.For more information see https://aka.ms/text-analytics-offsets """ self._java_obj = self._java_obj.setStringIndexTypeCol(value) return self
[docs] def setSubscriptionKey(self, value): """ Args: subscriptionKey: the API key to use """ if isinstance(value, list): value = SparkContext._active_spark_context._jvm.com.microsoft.azure.synapse.ml.param.ServiceParam.toSeq(value) self._java_obj = self._java_obj.setSubscriptionKey(value) return self
[docs] def setSubscriptionKeyCol(self, value): """ Args: subscriptionKey: the API key to use """ self._java_obj = self._java_obj.setSubscriptionKeyCol(value) return self
[docs] def setSummaryLength(self, value): """ Args: summaryLength: (NOTE: Recommended to use summaryLength over sentenceCount) Controls the approximate length of the output summaries. """ if isinstance(value, list): value = SparkContext._active_spark_context._jvm.com.microsoft.azure.synapse.ml.param.ServiceParam.toSeq(value) self._java_obj = self._java_obj.setSummaryLength(value) return self
[docs] def setSummaryLengthCol(self, value): """ Args: summaryLength: (NOTE: Recommended to use summaryLength over sentenceCount) Controls the approximate length of the output summaries. """ self._java_obj = self._java_obj.setSummaryLengthCol(value) return self
[docs] def setSuppressMaxRetriesException(self, value): """ Args: suppressMaxRetriesException: set true to suppress the maxumimum retries exception and report in the error column """ self._set(suppressMaxRetriesException=value) return self
[docs] def setText(self, value): """ Args: text: the text in the request body """ if isinstance(value, list): value = SparkContext._active_spark_context._jvm.com.microsoft.azure.synapse.ml.param.ServiceParam.toSeq(value) self._java_obj = self._java_obj.setText(value) return self
[docs] def setTextCol(self, value): """ Args: text: the text in the request body """ self._java_obj = self._java_obj.setTextCol(value) return self
[docs] def setTimeout(self, value): """ Args: timeout: number of seconds to wait before closing the connection """ self._set(timeout=value) return self
[docs] def setUrl(self, value): """ Args: url: Url of the service """ self._set(url=value) return self
[docs] def getAADToken(self): """ Returns: AADToken: AAD Token used for authentication """ return self._java_obj.getAADToken()
[docs] def getCustomAuthHeader(self): """ Returns: CustomAuthHeader: A Custom Value for Authorization Header """ return self._java_obj.getCustomAuthHeader()
[docs] def getApiVersion(self): """ Returns: apiVersion: version of the api """ return self._java_obj.getApiVersion()
[docs] def getBackoffs(self): """ Returns: backoffs: array of backoffs to use in the handler """ return self.getOrDefault(self.backoffs)
[docs] def getBatchSize(self): """ Returns: batchSize: The max size of the buffer """ return self.getOrDefault(self.batchSize)
[docs] def getConcurrency(self): """ Returns: concurrency: max number of concurrent calls """ return self.getOrDefault(self.concurrency)
[docs] def getConcurrentTimeout(self): """ Returns: concurrentTimeout: max number seconds to wait on futures if concurrency >= 1 """ return self.getOrDefault(self.concurrentTimeout)
[docs] def getCustomHeaders(self): """ Returns: customHeaders: Map of Custom Header Key-Value Tuples. """ return self._java_obj.getCustomHeaders()
[docs] def getCustomUrlRoot(self): """ Returns: customUrlRoot: The custom URL root for the service. This will not append OpenAI specific model path completions (i.e. /chat/completions) to the URL. """ return self.getOrDefault(self.customUrlRoot)
[docs] def getDeploymentName(self): """ Returns: deploymentName: This field indicates the deployment name for the model. This is a required field. """ return self._java_obj.getDeploymentName()
[docs] def getDomain(self): """ Returns: domain: The domain of the PII entity recognition request. """ return self._java_obj.getDomain()
[docs] def getErrorCol(self): """ Returns: errorCol: column to hold http errors """ return self.getOrDefault(self.errorCol)
[docs] def getExcludeNormalizedValues(self): """ Returns: excludeNormalizedValues: (Optional) request parameter that allows the user to provide settings for running the inference. If set to true, the service will exclude normalized """ return self._java_obj.getExcludeNormalizedValues()
[docs] def getExclusionList(self): """ Returns: exclusionList: (Optional) request parameter that filters out any entities that are included the excludeList. When a user specifies an excludeList, they cannot get a prediction returned with an entity in that list. We will apply inclusionList before exclusionList """ return self._java_obj.getExclusionList()
[docs] def getInclusionList(self): """ Returns: inclusionList: (Optional) request parameter that limits the output to the requested entity types included in this list. We will apply inclusionList before exclusionList """ return self._java_obj.getInclusionList()
[docs] def getInitialPollingDelay(self): """ Returns: initialPollingDelay: number of milliseconds to wait before first poll for result """ return self.getOrDefault(self.initialPollingDelay)
[docs] def getKind(self): """ Returns: kind: Enumeration of supported Text Analysis tasks """ return self.getOrDefault(self.kind)
[docs] def getLanguage(self): """ Returns: language: the language code of the text (optional for some services) """ return self._java_obj.getLanguage()
[docs] def getLoggingOptOut(self): """ Returns: loggingOptOut: loggingOptOut for task """ return self._java_obj.getLoggingOptOut()
[docs] def getMaxPollingRetries(self): """ Returns: maxPollingRetries: number of times to poll """ return self.getOrDefault(self.maxPollingRetries)
[docs] def getModelVersion(self): """ Returns: modelVersion: Version of the model """ return self._java_obj.getModelVersion()
[docs] def getOpinionMining(self): """ Returns: opinionMining: Whether to use opinion mining in the request or not. """ return self._java_obj.getOpinionMining()
[docs] def getOutputCol(self): """ Returns: outputCol: The name of the output column """ return self.getOrDefault(self.outputCol)
[docs] def getOverlapPolicy(self): """ Returns: overlapPolicy: (Optional) describes the type of overlap policy to apply to the ner output. """ return self._java_obj.getOverlapPolicy()
[docs] def getPiiCategories(self): """ Returns: piiCategories: describes the PII categories to return """ return self._java_obj.getPiiCategories()
[docs] def getPollingDelay(self): """ Returns: pollingDelay: number of milliseconds to wait between polling """ return self.getOrDefault(self.pollingDelay)
[docs] def getProjectName(self): """ Returns: projectName: This field indicates the project name for the model. This is a required field """ return self._java_obj.getProjectName()
[docs] def getSentenceCount(self): """ Returns: sentenceCount: Specifies the number of sentences in the extracted summary. """ return self._java_obj.getSentenceCount()
[docs] def getShowStats(self): """ Returns: showStats: Whether to include detailed statistics in the response """ return self._java_obj.getShowStats()
[docs] def getSortBy(self): """ Returns: sortBy: Specifies how to sort the extracted summaries. This can be either 'Rank' or 'Offset'. """ return self._java_obj.getSortBy()
[docs] def getStringIndexType(self): """ Returns: stringIndexType: Specifies the method used to interpret string offsets. Defaults to Text Elements(Graphemes) according to Unicode v8.0.0.For more information see https://aka.ms/text-analytics-offsets """ return self._java_obj.getStringIndexType()
[docs] def getSubscriptionKey(self): """ Returns: subscriptionKey: the API key to use """ return self._java_obj.getSubscriptionKey()
[docs] def getSummaryLength(self): """ Returns: summaryLength: (NOTE: Recommended to use summaryLength over sentenceCount) Controls the approximate length of the output summaries. """ return self._java_obj.getSummaryLength()
[docs] def getSuppressMaxRetriesException(self): """ Returns: suppressMaxRetriesException: set true to suppress the maxumimum retries exception and report in the error column """ return self.getOrDefault(self.suppressMaxRetriesException)
[docs] def getText(self): """ Returns: text: the text in the request body """ return self._java_obj.getText()
[docs] def getTimeout(self): """ Returns: timeout: number of seconds to wait before closing the connection """ return self.getOrDefault(self.timeout)
[docs] def getUrl(self): """ Returns: url: Url of the service """ return self.getOrDefault(self.url)
[docs] def setCustomServiceName(self, value): self._java_obj = self._java_obj.setCustomServiceName(value) return self
[docs] def setEndpoint(self, value): self._java_obj = self._java_obj.setEndpoint(value) return self
[docs] def setDefaultInternalEndpoint(self, value): self._java_obj = self._java_obj.setDefaultInternalEndpoint(value) return self
def _transform(self, dataset: DataFrame) -> DataFrame: return super()._transform(dataset)
[docs] def setLocation(self, value): self._java_obj = self._java_obj.setLocation(value) return self