synapse.ml.services.anomaly package
Submodules
synapse.ml.services.anomaly.DetectAnomalies module
- class synapse.ml.services.anomaly.DetectAnomalies.DetectAnomalies(java_obj=None, AADToken=None, AADTokenCol=None, CustomAuthHeader=None, CustomAuthHeaderCol=None, concurrency=1, concurrentTimeout=None, customInterval=None, customIntervalCol=None, errorCol='DetectAnomalies_88eb3636f1d4_error', granularity=None, granularityCol=None, handler=None, imputeFixedValue=None, imputeFixedValueCol=None, imputeMode=None, imputeModeCol=None, maxAnomalyRatio=None, maxAnomalyRatioCol=None, outputCol='DetectAnomalies_88eb3636f1d4_output', period=None, periodCol=None, sensitivity=None, sensitivityCol=None, series=None, seriesCol=None, subscriptionKey=None, subscriptionKeyCol=None, timeout=60.0, url=None)[source]
Bases:
ComplexParamsMixin
,JavaMLReadable
,JavaMLWritable
,JavaTransformer
- Parameters:
CustomAuthHeader¶ (object) – A Custom Value for Authorization Header
concurrentTimeout¶ (float) – max number seconds to wait on futures if concurrency >= 1
customInterval¶ (object) – Custom Interval is used to set non-standard time interval, for example, if the series is 5 minutes, request can be set as granularity=minutely, customInterval=5.
granularity¶ (object) – Can only be one of yearly, monthly, weekly, daily, hourly or minutely. Granularity is used for verify whether input series is valid.
handler¶ (object) – Which strategy to use when handling requests
imputeFixedValue¶ (object) – Optional argument, fixed value to use when imputeMode is set to “fixed”
imputeMode¶ (object) – Optional argument, impute mode of a time series. Possible values: auto, previous, linear, fixed, zero, notFill
maxAnomalyRatio¶ (object) – Optional argument, advanced model parameter, max anomaly ratio in a time series.
period¶ (object) – Optional argument, periodic value of a time series. If the value is null or does not present, the API will determine the period automatically.
sensitivity¶ (object) – Optional argument, advanced model parameter, between 0-99, the lower the value is, the larger the margin value will be which means less anomalies will be accepted
series¶ (object) – Time series data points. Points should be sorted by timestamp in ascending order to match the anomaly detection result. If the data is not sorted correctly or there is duplicated timestamp, the API will not work. In such case, an error message will be returned.
timeout¶ (float) – number of seconds to wait before closing the connection
- AADToken = Param(parent='undefined', name='AADToken', doc='ServiceParam: AAD Token used for authentication')
- CustomAuthHeader = Param(parent='undefined', name='CustomAuthHeader', doc='ServiceParam: A Custom Value for Authorization Header')
- concurrency = Param(parent='undefined', name='concurrency', doc='max number of concurrent calls')
- concurrentTimeout = Param(parent='undefined', name='concurrentTimeout', doc='max number seconds to wait on futures if concurrency >= 1')
- customInterval = Param(parent='undefined', name='customInterval', doc='ServiceParam: Custom Interval is used to set non-standard time interval, for example, if the series is 5 minutes, request can be set as granularity=minutely, customInterval=5. ')
- errorCol = Param(parent='undefined', name='errorCol', doc='column to hold http errors')
- getConcurrentTimeout()[source]
- Returns:
max number seconds to wait on futures if concurrency >= 1
- Return type:
concurrentTimeout
- getCustomAuthHeader()[source]
- Returns:
A Custom Value for Authorization Header
- Return type:
CustomAuthHeader
- getCustomInterval()[source]
- Returns:
Custom Interval is used to set non-standard time interval, for example, if the series is 5 minutes, request can be set as granularity=minutely, customInterval=5.
- Return type:
customInterval
- getGranularity()[source]
- Returns:
Can only be one of yearly, monthly, weekly, daily, hourly or minutely. Granularity is used for verify whether input series is valid.
- Return type:
granularity
- getImputeFixedValue()[source]
- Returns:
Optional argument, fixed value to use when imputeMode is set to “fixed”
- Return type:
imputeFixedValue
- getImputeMode()[source]
- Returns:
Optional argument, impute mode of a time series. Possible values: auto, previous, linear, fixed, zero, notFill
- Return type:
imputeMode
- getMaxAnomalyRatio()[source]
- Returns:
Optional argument, advanced model parameter, max anomaly ratio in a time series.
- Return type:
maxAnomalyRatio
- getPeriod()[source]
- Returns:
Optional argument, periodic value of a time series. If the value is null or does not present, the API will determine the period automatically.
- Return type:
period
- getSensitivity()[source]
- Returns:
Optional argument, advanced model parameter, between 0-99, the lower the value is, the larger the margin value will be which means less anomalies will be accepted
- Return type:
sensitivity
- getSeries()[source]
- Returns:
Time series data points. Points should be sorted by timestamp in ascending order to match the anomaly detection result. If the data is not sorted correctly or there is duplicated timestamp, the API will not work. In such case, an error message will be returned.
- Return type:
series
- getTimeout()[source]
- Returns:
number of seconds to wait before closing the connection
- Return type:
timeout
- granularity = Param(parent='undefined', name='granularity', doc='ServiceParam: Can only be one of yearly, monthly, weekly, daily, hourly or minutely. Granularity is used for verify whether input series is valid. ')
- handler = Param(parent='undefined', name='handler', doc='Which strategy to use when handling requests')
- imputeFixedValue = Param(parent='undefined', name='imputeFixedValue', doc='ServiceParam: Optional argument, fixed value to use when imputeMode is set to "fixed" ')
- imputeMode = Param(parent='undefined', name='imputeMode', doc='ServiceParam: Optional argument, impute mode of a time series. Possible values: auto, previous, linear, fixed, zero, notFill ')
- maxAnomalyRatio = Param(parent='undefined', name='maxAnomalyRatio', doc='ServiceParam: Optional argument, advanced model parameter, max anomaly ratio in a time series. ')
- outputCol = Param(parent='undefined', name='outputCol', doc='The name of the output column')
- period = Param(parent='undefined', name='period', doc='ServiceParam: Optional argument, periodic value of a time series. If the value is null or does not present, the API will determine the period automatically. ')
- sensitivity = Param(parent='undefined', name='sensitivity', doc='ServiceParam: Optional argument, advanced model parameter, between 0-99, the lower the value is, the larger the margin value will be which means less anomalies will be accepted ')
- series = Param(parent='undefined', name='series', doc='ServiceParam: Time series data points. Points should be sorted by timestamp in ascending order to match the anomaly detection result. If the data is not sorted correctly or there is duplicated timestamp, the API will not work. In such case, an error message will be returned. ')
- setConcurrentTimeout(value)[source]
- Parameters:
concurrentTimeout¶ – max number seconds to wait on futures if concurrency >= 1
- setCustomAuthHeader(value)[source]
- Parameters:
CustomAuthHeader¶ – A Custom Value for Authorization Header
- setCustomAuthHeaderCol(value)[source]
- Parameters:
CustomAuthHeader¶ – A Custom Value for Authorization Header
- setCustomInterval(value)[source]
- Parameters:
customInterval¶ – Custom Interval is used to set non-standard time interval, for example, if the series is 5 minutes, request can be set as granularity=minutely, customInterval=5.
- setCustomIntervalCol(value)[source]
- Parameters:
customInterval¶ – Custom Interval is used to set non-standard time interval, for example, if the series is 5 minutes, request can be set as granularity=minutely, customInterval=5.
- setGranularity(value)[source]
- Parameters:
granularity¶ – Can only be one of yearly, monthly, weekly, daily, hourly or minutely. Granularity is used for verify whether input series is valid.
- setGranularityCol(value)[source]
- Parameters:
granularity¶ – Can only be one of yearly, monthly, weekly, daily, hourly or minutely. Granularity is used for verify whether input series is valid.
- setImputeFixedValue(value)[source]
- Parameters:
imputeFixedValue¶ – Optional argument, fixed value to use when imputeMode is set to “fixed”
- setImputeFixedValueCol(value)[source]
- Parameters:
imputeFixedValue¶ – Optional argument, fixed value to use when imputeMode is set to “fixed”
- setImputeMode(value)[source]
- Parameters:
imputeMode¶ – Optional argument, impute mode of a time series. Possible values: auto, previous, linear, fixed, zero, notFill
- setImputeModeCol(value)[source]
- Parameters:
imputeMode¶ – Optional argument, impute mode of a time series. Possible values: auto, previous, linear, fixed, zero, notFill
- setMaxAnomalyRatio(value)[source]
- Parameters:
maxAnomalyRatio¶ – Optional argument, advanced model parameter, max anomaly ratio in a time series.
- setMaxAnomalyRatioCol(value)[source]
- Parameters:
maxAnomalyRatio¶ – Optional argument, advanced model parameter, max anomaly ratio in a time series.
- setParams(AADToken=None, AADTokenCol=None, CustomAuthHeader=None, CustomAuthHeaderCol=None, concurrency=1, concurrentTimeout=None, customInterval=None, customIntervalCol=None, errorCol='DetectAnomalies_88eb3636f1d4_error', granularity=None, granularityCol=None, handler=None, imputeFixedValue=None, imputeFixedValueCol=None, imputeMode=None, imputeModeCol=None, maxAnomalyRatio=None, maxAnomalyRatioCol=None, outputCol='DetectAnomalies_88eb3636f1d4_output', period=None, periodCol=None, sensitivity=None, sensitivityCol=None, series=None, seriesCol=None, subscriptionKey=None, subscriptionKeyCol=None, timeout=60.0, url=None)[source]
Set the (keyword only) parameters
- setPeriod(value)[source]
- Parameters:
period¶ – Optional argument, periodic value of a time series. If the value is null or does not present, the API will determine the period automatically.
- setPeriodCol(value)[source]
- Parameters:
period¶ – Optional argument, periodic value of a time series. If the value is null or does not present, the API will determine the period automatically.
- setSensitivity(value)[source]
- Parameters:
sensitivity¶ – Optional argument, advanced model parameter, between 0-99, the lower the value is, the larger the margin value will be which means less anomalies will be accepted
- setSensitivityCol(value)[source]
- Parameters:
sensitivity¶ – Optional argument, advanced model parameter, between 0-99, the lower the value is, the larger the margin value will be which means less anomalies will be accepted
- setSeries(value)[source]
- Parameters:
series¶ – Time series data points. Points should be sorted by timestamp in ascending order to match the anomaly detection result. If the data is not sorted correctly or there is duplicated timestamp, the API will not work. In such case, an error message will be returned.
- setSeriesCol(value)[source]
- Parameters:
series¶ – Time series data points. Points should be sorted by timestamp in ascending order to match the anomaly detection result. If the data is not sorted correctly or there is duplicated timestamp, the API will not work. In such case, an error message will be returned.
- setTimeout(value)[source]
- Parameters:
timeout¶ – number of seconds to wait before closing the connection
- subscriptionKey = Param(parent='undefined', name='subscriptionKey', doc='ServiceParam: the API key to use')
- timeout = Param(parent='undefined', name='timeout', doc='number of seconds to wait before closing the connection')
- url = Param(parent='undefined', name='url', doc='Url of the service')
synapse.ml.services.anomaly.DetectLastAnomaly module
- class synapse.ml.services.anomaly.DetectLastAnomaly.DetectLastAnomaly(java_obj=None, AADToken=None, AADTokenCol=None, CustomAuthHeader=None, CustomAuthHeaderCol=None, concurrency=1, concurrentTimeout=None, customInterval=None, customIntervalCol=None, errorCol='DetectLastAnomaly_bf88f392f777_error', granularity=None, granularityCol=None, handler=None, imputeFixedValue=None, imputeFixedValueCol=None, imputeMode=None, imputeModeCol=None, maxAnomalyRatio=None, maxAnomalyRatioCol=None, outputCol='DetectLastAnomaly_bf88f392f777_output', period=None, periodCol=None, sensitivity=None, sensitivityCol=None, series=None, seriesCol=None, subscriptionKey=None, subscriptionKeyCol=None, timeout=60.0, url=None)[source]
Bases:
ComplexParamsMixin
,JavaMLReadable
,JavaMLWritable
,JavaTransformer
- Parameters:
CustomAuthHeader¶ (object) – A Custom Value for Authorization Header
concurrentTimeout¶ (float) – max number seconds to wait on futures if concurrency >= 1
customInterval¶ (object) – Custom Interval is used to set non-standard time interval, for example, if the series is 5 minutes, request can be set as granularity=minutely, customInterval=5.
granularity¶ (object) – Can only be one of yearly, monthly, weekly, daily, hourly or minutely. Granularity is used for verify whether input series is valid.
handler¶ (object) – Which strategy to use when handling requests
imputeFixedValue¶ (object) – Optional argument, fixed value to use when imputeMode is set to “fixed”
imputeMode¶ (object) – Optional argument, impute mode of a time series. Possible values: auto, previous, linear, fixed, zero, notFill
maxAnomalyRatio¶ (object) – Optional argument, advanced model parameter, max anomaly ratio in a time series.
period¶ (object) – Optional argument, periodic value of a time series. If the value is null or does not present, the API will determine the period automatically.
sensitivity¶ (object) – Optional argument, advanced model parameter, between 0-99, the lower the value is, the larger the margin value will be which means less anomalies will be accepted
series¶ (object) – Time series data points. Points should be sorted by timestamp in ascending order to match the anomaly detection result. If the data is not sorted correctly or there is duplicated timestamp, the API will not work. In such case, an error message will be returned.
timeout¶ (float) – number of seconds to wait before closing the connection
- AADToken = Param(parent='undefined', name='AADToken', doc='ServiceParam: AAD Token used for authentication')
- CustomAuthHeader = Param(parent='undefined', name='CustomAuthHeader', doc='ServiceParam: A Custom Value for Authorization Header')
- concurrency = Param(parent='undefined', name='concurrency', doc='max number of concurrent calls')
- concurrentTimeout = Param(parent='undefined', name='concurrentTimeout', doc='max number seconds to wait on futures if concurrency >= 1')
- customInterval = Param(parent='undefined', name='customInterval', doc='ServiceParam: Custom Interval is used to set non-standard time interval, for example, if the series is 5 minutes, request can be set as granularity=minutely, customInterval=5. ')
- errorCol = Param(parent='undefined', name='errorCol', doc='column to hold http errors')
- getConcurrentTimeout()[source]
- Returns:
max number seconds to wait on futures if concurrency >= 1
- Return type:
concurrentTimeout
- getCustomAuthHeader()[source]
- Returns:
A Custom Value for Authorization Header
- Return type:
CustomAuthHeader
- getCustomInterval()[source]
- Returns:
Custom Interval is used to set non-standard time interval, for example, if the series is 5 minutes, request can be set as granularity=minutely, customInterval=5.
- Return type:
customInterval
- getGranularity()[source]
- Returns:
Can only be one of yearly, monthly, weekly, daily, hourly or minutely. Granularity is used for verify whether input series is valid.
- Return type:
granularity
- getImputeFixedValue()[source]
- Returns:
Optional argument, fixed value to use when imputeMode is set to “fixed”
- Return type:
imputeFixedValue
- getImputeMode()[source]
- Returns:
Optional argument, impute mode of a time series. Possible values: auto, previous, linear, fixed, zero, notFill
- Return type:
imputeMode
- getMaxAnomalyRatio()[source]
- Returns:
Optional argument, advanced model parameter, max anomaly ratio in a time series.
- Return type:
maxAnomalyRatio
- getPeriod()[source]
- Returns:
Optional argument, periodic value of a time series. If the value is null or does not present, the API will determine the period automatically.
- Return type:
period
- getSensitivity()[source]
- Returns:
Optional argument, advanced model parameter, between 0-99, the lower the value is, the larger the margin value will be which means less anomalies will be accepted
- Return type:
sensitivity
- getSeries()[source]
- Returns:
Time series data points. Points should be sorted by timestamp in ascending order to match the anomaly detection result. If the data is not sorted correctly or there is duplicated timestamp, the API will not work. In such case, an error message will be returned.
- Return type:
series
- getTimeout()[source]
- Returns:
number of seconds to wait before closing the connection
- Return type:
timeout
- granularity = Param(parent='undefined', name='granularity', doc='ServiceParam: Can only be one of yearly, monthly, weekly, daily, hourly or minutely. Granularity is used for verify whether input series is valid. ')
- handler = Param(parent='undefined', name='handler', doc='Which strategy to use when handling requests')
- imputeFixedValue = Param(parent='undefined', name='imputeFixedValue', doc='ServiceParam: Optional argument, fixed value to use when imputeMode is set to "fixed" ')
- imputeMode = Param(parent='undefined', name='imputeMode', doc='ServiceParam: Optional argument, impute mode of a time series. Possible values: auto, previous, linear, fixed, zero, notFill ')
- maxAnomalyRatio = Param(parent='undefined', name='maxAnomalyRatio', doc='ServiceParam: Optional argument, advanced model parameter, max anomaly ratio in a time series. ')
- outputCol = Param(parent='undefined', name='outputCol', doc='The name of the output column')
- period = Param(parent='undefined', name='period', doc='ServiceParam: Optional argument, periodic value of a time series. If the value is null or does not present, the API will determine the period automatically. ')
- sensitivity = Param(parent='undefined', name='sensitivity', doc='ServiceParam: Optional argument, advanced model parameter, between 0-99, the lower the value is, the larger the margin value will be which means less anomalies will be accepted ')
- series = Param(parent='undefined', name='series', doc='ServiceParam: Time series data points. Points should be sorted by timestamp in ascending order to match the anomaly detection result. If the data is not sorted correctly or there is duplicated timestamp, the API will not work. In such case, an error message will be returned. ')
- setConcurrentTimeout(value)[source]
- Parameters:
concurrentTimeout¶ – max number seconds to wait on futures if concurrency >= 1
- setCustomAuthHeader(value)[source]
- Parameters:
CustomAuthHeader¶ – A Custom Value for Authorization Header
- setCustomAuthHeaderCol(value)[source]
- Parameters:
CustomAuthHeader¶ – A Custom Value for Authorization Header
- setCustomInterval(value)[source]
- Parameters:
customInterval¶ – Custom Interval is used to set non-standard time interval, for example, if the series is 5 minutes, request can be set as granularity=minutely, customInterval=5.
- setCustomIntervalCol(value)[source]
- Parameters:
customInterval¶ – Custom Interval is used to set non-standard time interval, for example, if the series is 5 minutes, request can be set as granularity=minutely, customInterval=5.
- setGranularity(value)[source]
- Parameters:
granularity¶ – Can only be one of yearly, monthly, weekly, daily, hourly or minutely. Granularity is used for verify whether input series is valid.
- setGranularityCol(value)[source]
- Parameters:
granularity¶ – Can only be one of yearly, monthly, weekly, daily, hourly or minutely. Granularity is used for verify whether input series is valid.
- setImputeFixedValue(value)[source]
- Parameters:
imputeFixedValue¶ – Optional argument, fixed value to use when imputeMode is set to “fixed”
- setImputeFixedValueCol(value)[source]
- Parameters:
imputeFixedValue¶ – Optional argument, fixed value to use when imputeMode is set to “fixed”
- setImputeMode(value)[source]
- Parameters:
imputeMode¶ – Optional argument, impute mode of a time series. Possible values: auto, previous, linear, fixed, zero, notFill
- setImputeModeCol(value)[source]
- Parameters:
imputeMode¶ – Optional argument, impute mode of a time series. Possible values: auto, previous, linear, fixed, zero, notFill
- setMaxAnomalyRatio(value)[source]
- Parameters:
maxAnomalyRatio¶ – Optional argument, advanced model parameter, max anomaly ratio in a time series.
- setMaxAnomalyRatioCol(value)[source]
- Parameters:
maxAnomalyRatio¶ – Optional argument, advanced model parameter, max anomaly ratio in a time series.
- setParams(AADToken=None, AADTokenCol=None, CustomAuthHeader=None, CustomAuthHeaderCol=None, concurrency=1, concurrentTimeout=None, customInterval=None, customIntervalCol=None, errorCol='DetectLastAnomaly_bf88f392f777_error', granularity=None, granularityCol=None, handler=None, imputeFixedValue=None, imputeFixedValueCol=None, imputeMode=None, imputeModeCol=None, maxAnomalyRatio=None, maxAnomalyRatioCol=None, outputCol='DetectLastAnomaly_bf88f392f777_output', period=None, periodCol=None, sensitivity=None, sensitivityCol=None, series=None, seriesCol=None, subscriptionKey=None, subscriptionKeyCol=None, timeout=60.0, url=None)[source]
Set the (keyword only) parameters
- setPeriod(value)[source]
- Parameters:
period¶ – Optional argument, periodic value of a time series. If the value is null or does not present, the API will determine the period automatically.
- setPeriodCol(value)[source]
- Parameters:
period¶ – Optional argument, periodic value of a time series. If the value is null or does not present, the API will determine the period automatically.
- setSensitivity(value)[source]
- Parameters:
sensitivity¶ – Optional argument, advanced model parameter, between 0-99, the lower the value is, the larger the margin value will be which means less anomalies will be accepted
- setSensitivityCol(value)[source]
- Parameters:
sensitivity¶ – Optional argument, advanced model parameter, between 0-99, the lower the value is, the larger the margin value will be which means less anomalies will be accepted
- setSeries(value)[source]
- Parameters:
series¶ – Time series data points. Points should be sorted by timestamp in ascending order to match the anomaly detection result. If the data is not sorted correctly or there is duplicated timestamp, the API will not work. In such case, an error message will be returned.
- setSeriesCol(value)[source]
- Parameters:
series¶ – Time series data points. Points should be sorted by timestamp in ascending order to match the anomaly detection result. If the data is not sorted correctly or there is duplicated timestamp, the API will not work. In such case, an error message will be returned.
- setTimeout(value)[source]
- Parameters:
timeout¶ – number of seconds to wait before closing the connection
- subscriptionKey = Param(parent='undefined', name='subscriptionKey', doc='ServiceParam: the API key to use')
- timeout = Param(parent='undefined', name='timeout', doc='number of seconds to wait before closing the connection')
- url = Param(parent='undefined', name='url', doc='Url of the service')
synapse.ml.services.anomaly.DetectLastMultivariateAnomaly module
- class synapse.ml.services.anomaly.DetectLastMultivariateAnomaly.DetectLastMultivariateAnomaly(java_obj=None, AADToken=None, AADTokenCol=None, CustomAuthHeader=None, CustomAuthHeaderCol=None, batchSize=300, concurrency=1, concurrentTimeout=None, diagnosticsInfo=None, errorCol='DetectLastMultivariateAnomaly_7004471af64b_error', handler=None, inputVariablesCols=None, modelId=None, outputCol='DetectLastMultivariateAnomaly_7004471af64b_output', subscriptionKey=None, subscriptionKeyCol=None, timeout=60.0, timestampCol='timestamp', topContributorCount=10, url=None)[source]
Bases:
ComplexParamsMixin
,JavaMLReadable
,JavaMLWritable
,JavaTransformer
- Parameters:
CustomAuthHeader¶ (object) – A Custom Value for Authorization Header
concurrentTimeout¶ (float) – max number seconds to wait on futures if concurrency >= 1
diagnosticsInfo¶ (object) – diagnosticsInfo for training a multivariate anomaly detection model
handler¶ (object) – Which strategy to use when handling requests
inputVariablesCols¶ (list) – The names of the input variables columns
timeout¶ (float) – number of seconds to wait before closing the connection
topContributorCount¶ (int) – This is a number that you could specify N from 1 to 30, which will give you the details of top N contributed variables in the anomaly results. For example, if you have 100 variables in the model, but you only care the top five contributed variables in detection results, then you should fill this field with 5. The default number is 10.
- AADToken = Param(parent='undefined', name='AADToken', doc='ServiceParam: AAD Token used for authentication')
- CustomAuthHeader = Param(parent='undefined', name='CustomAuthHeader', doc='ServiceParam: A Custom Value for Authorization Header')
- batchSize = Param(parent='undefined', name='batchSize', doc='The max size of the buffer')
- concurrency = Param(parent='undefined', name='concurrency', doc='max number of concurrent calls')
- concurrentTimeout = Param(parent='undefined', name='concurrentTimeout', doc='max number seconds to wait on futures if concurrency >= 1')
- diagnosticsInfo = Param(parent='undefined', name='diagnosticsInfo', doc='diagnosticsInfo for training a multivariate anomaly detection model')
- errorCol = Param(parent='undefined', name='errorCol', doc='column to hold http errors')
- getConcurrentTimeout()[source]
- Returns:
max number seconds to wait on futures if concurrency >= 1
- Return type:
concurrentTimeout
- getCustomAuthHeader()[source]
- Returns:
A Custom Value for Authorization Header
- Return type:
CustomAuthHeader
- getDiagnosticsInfo()[source]
- Returns:
diagnosticsInfo for training a multivariate anomaly detection model
- Return type:
diagnosticsInfo
- getInputVariablesCols()[source]
- Returns:
The names of the input variables columns
- Return type:
inputVariablesCols
- getTimeout()[source]
- Returns:
number of seconds to wait before closing the connection
- Return type:
timeout
- getTopContributorCount()[source]
- Returns:
This is a number that you could specify N from 1 to 30, which will give you the details of top N contributed variables in the anomaly results. For example, if you have 100 variables in the model, but you only care the top five contributed variables in detection results, then you should fill this field with 5. The default number is 10.
- Return type:
topContributorCount
- handler = Param(parent='undefined', name='handler', doc='Which strategy to use when handling requests')
- inputVariablesCols = Param(parent='undefined', name='inputVariablesCols', doc='The names of the input variables columns')
- modelId = Param(parent='undefined', name='modelId', doc='Format - uuid. Model identifier.')
- outputCol = Param(parent='undefined', name='outputCol', doc='The name of the output column')
- setConcurrentTimeout(value)[source]
- Parameters:
concurrentTimeout¶ – max number seconds to wait on futures if concurrency >= 1
- setCustomAuthHeader(value)[source]
- Parameters:
CustomAuthHeader¶ – A Custom Value for Authorization Header
- setCustomAuthHeaderCol(value)[source]
- Parameters:
CustomAuthHeader¶ – A Custom Value for Authorization Header
- setDiagnosticsInfo(value)[source]
- Parameters:
diagnosticsInfo¶ – diagnosticsInfo for training a multivariate anomaly detection model
- setInputVariablesCols(value)[source]
- Parameters:
inputVariablesCols¶ – The names of the input variables columns
- setParams(AADToken=None, AADTokenCol=None, CustomAuthHeader=None, CustomAuthHeaderCol=None, batchSize=300, concurrency=1, concurrentTimeout=None, diagnosticsInfo=None, errorCol='DetectLastMultivariateAnomaly_7004471af64b_error', handler=None, inputVariablesCols=None, modelId=None, outputCol='DetectLastMultivariateAnomaly_7004471af64b_output', subscriptionKey=None, subscriptionKeyCol=None, timeout=60.0, timestampCol='timestamp', topContributorCount=10, url=None)[source]
Set the (keyword only) parameters
- setTimeout(value)[source]
- Parameters:
timeout¶ – number of seconds to wait before closing the connection
- setTopContributorCount(value)[source]
- Parameters:
topContributorCount¶ – This is a number that you could specify N from 1 to 30, which will give you the details of top N contributed variables in the anomaly results. For example, if you have 100 variables in the model, but you only care the top five contributed variables in detection results, then you should fill this field with 5. The default number is 10.
- subscriptionKey = Param(parent='undefined', name='subscriptionKey', doc='ServiceParam: the API key to use')
- timeout = Param(parent='undefined', name='timeout', doc='number of seconds to wait before closing the connection')
- timestampCol = Param(parent='undefined', name='timestampCol', doc='Timestamp column name')
- topContributorCount = Param(parent='undefined', name='topContributorCount', doc='This is a number that you could specify N from 1 to 30, which will give you the details of top N contributed variables in the anomaly results. For example, if you have 100 variables in the model, but you only care the top five contributed variables in detection results, then you should fill this field with 5. The default number is 10.')
- url = Param(parent='undefined', name='url', doc='Url of the service')
synapse.ml.services.anomaly.SimpleDetectAnomalies module
- class synapse.ml.services.anomaly.SimpleDetectAnomalies.SimpleDetectAnomalies(java_obj=None, AADToken=None, AADTokenCol=None, CustomAuthHeader=None, CustomAuthHeaderCol=None, concurrency=1, concurrentTimeout=None, customInterval=None, customIntervalCol=None, errorCol='SimpleDetectAnomalies_3cb1171ccd38_error', granularity=None, granularityCol=None, groupbyCol=None, handler=None, imputeFixedValue=None, imputeFixedValueCol=None, imputeMode=None, imputeModeCol=None, maxAnomalyRatio=None, maxAnomalyRatioCol=None, outputCol='SimpleDetectAnomalies_3cb1171ccd38_output', period=None, periodCol=None, sensitivity=None, sensitivityCol=None, series=None, seriesCol=None, subscriptionKey=None, subscriptionKeyCol=None, timeout=60.0, timestampCol='timestamp', url=None, valueCol='value')[source]
Bases:
ComplexParamsMixin
,JavaMLReadable
,JavaMLWritable
,JavaTransformer
- Parameters:
CustomAuthHeader¶ (object) – A Custom Value for Authorization Header
concurrentTimeout¶ (float) – max number seconds to wait on futures if concurrency >= 1
customInterval¶ (object) – Custom Interval is used to set non-standard time interval, for example, if the series is 5 minutes, request can be set as granularity=minutely, customInterval=5.
granularity¶ (object) – Can only be one of yearly, monthly, weekly, daily, hourly or minutely. Granularity is used for verify whether input series is valid.
handler¶ (object) – Which strategy to use when handling requests
imputeFixedValue¶ (object) – Optional argument, fixed value to use when imputeMode is set to “fixed”
imputeMode¶ (object) – Optional argument, impute mode of a time series. Possible values: auto, previous, linear, fixed, zero, notFill
maxAnomalyRatio¶ (object) – Optional argument, advanced model parameter, max anomaly ratio in a time series.
period¶ (object) – Optional argument, periodic value of a time series. If the value is null or does not present, the API will determine the period automatically.
sensitivity¶ (object) – Optional argument, advanced model parameter, between 0-99, the lower the value is, the larger the margin value will be which means less anomalies will be accepted
series¶ (object) – Time series data points. Points should be sorted by timestamp in ascending order to match the anomaly detection result. If the data is not sorted correctly or there is duplicated timestamp, the API will not work. In such case, an error message will be returned.
timeout¶ (float) – number of seconds to wait before closing the connection
timestampCol¶ (str) – column representing the time of the series
valueCol¶ (str) – column representing the value of the series
- AADToken = Param(parent='undefined', name='AADToken', doc='ServiceParam: AAD Token used for authentication')
- CustomAuthHeader = Param(parent='undefined', name='CustomAuthHeader', doc='ServiceParam: A Custom Value for Authorization Header')
- concurrency = Param(parent='undefined', name='concurrency', doc='max number of concurrent calls')
- concurrentTimeout = Param(parent='undefined', name='concurrentTimeout', doc='max number seconds to wait on futures if concurrency >= 1')
- customInterval = Param(parent='undefined', name='customInterval', doc='ServiceParam: Custom Interval is used to set non-standard time interval, for example, if the series is 5 minutes, request can be set as granularity=minutely, customInterval=5. ')
- errorCol = Param(parent='undefined', name='errorCol', doc='column to hold http errors')
- getConcurrentTimeout()[source]
- Returns:
max number seconds to wait on futures if concurrency >= 1
- Return type:
concurrentTimeout
- getCustomAuthHeader()[source]
- Returns:
A Custom Value for Authorization Header
- Return type:
CustomAuthHeader
- getCustomInterval()[source]
- Returns:
Custom Interval is used to set non-standard time interval, for example, if the series is 5 minutes, request can be set as granularity=minutely, customInterval=5.
- Return type:
customInterval
- getGranularity()[source]
- Returns:
Can only be one of yearly, monthly, weekly, daily, hourly or minutely. Granularity is used for verify whether input series is valid.
- Return type:
granularity
- getImputeFixedValue()[source]
- Returns:
Optional argument, fixed value to use when imputeMode is set to “fixed”
- Return type:
imputeFixedValue
- getImputeMode()[source]
- Returns:
Optional argument, impute mode of a time series. Possible values: auto, previous, linear, fixed, zero, notFill
- Return type:
imputeMode
- getMaxAnomalyRatio()[source]
- Returns:
Optional argument, advanced model parameter, max anomaly ratio in a time series.
- Return type:
maxAnomalyRatio
- getPeriod()[source]
- Returns:
Optional argument, periodic value of a time series. If the value is null or does not present, the API will determine the period automatically.
- Return type:
period
- getSensitivity()[source]
- Returns:
Optional argument, advanced model parameter, between 0-99, the lower the value is, the larger the margin value will be which means less anomalies will be accepted
- Return type:
sensitivity
- getSeries()[source]
- Returns:
Time series data points. Points should be sorted by timestamp in ascending order to match the anomaly detection result. If the data is not sorted correctly or there is duplicated timestamp, the API will not work. In such case, an error message will be returned.
- Return type:
series
- getTimeout()[source]
- Returns:
number of seconds to wait before closing the connection
- Return type:
timeout
- getTimestampCol()[source]
- Returns:
column representing the time of the series
- Return type:
timestampCol
- granularity = Param(parent='undefined', name='granularity', doc='ServiceParam: Can only be one of yearly, monthly, weekly, daily, hourly or minutely. Granularity is used for verify whether input series is valid. ')
- groupbyCol = Param(parent='undefined', name='groupbyCol', doc='column that groups the series')
- handler = Param(parent='undefined', name='handler', doc='Which strategy to use when handling requests')
- imputeFixedValue = Param(parent='undefined', name='imputeFixedValue', doc='ServiceParam: Optional argument, fixed value to use when imputeMode is set to "fixed" ')
- imputeMode = Param(parent='undefined', name='imputeMode', doc='ServiceParam: Optional argument, impute mode of a time series. Possible values: auto, previous, linear, fixed, zero, notFill ')
- maxAnomalyRatio = Param(parent='undefined', name='maxAnomalyRatio', doc='ServiceParam: Optional argument, advanced model parameter, max anomaly ratio in a time series. ')
- outputCol = Param(parent='undefined', name='outputCol', doc='The name of the output column')
- period = Param(parent='undefined', name='period', doc='ServiceParam: Optional argument, periodic value of a time series. If the value is null or does not present, the API will determine the period automatically. ')
- sensitivity = Param(parent='undefined', name='sensitivity', doc='ServiceParam: Optional argument, advanced model parameter, between 0-99, the lower the value is, the larger the margin value will be which means less anomalies will be accepted ')
- series = Param(parent='undefined', name='series', doc='ServiceParam: Time series data points. Points should be sorted by timestamp in ascending order to match the anomaly detection result. If the data is not sorted correctly or there is duplicated timestamp, the API will not work. In such case, an error message will be returned. ')
- setConcurrentTimeout(value)[source]
- Parameters:
concurrentTimeout¶ – max number seconds to wait on futures if concurrency >= 1
- setCustomAuthHeader(value)[source]
- Parameters:
CustomAuthHeader¶ – A Custom Value for Authorization Header
- setCustomAuthHeaderCol(value)[source]
- Parameters:
CustomAuthHeader¶ – A Custom Value for Authorization Header
- setCustomInterval(value)[source]
- Parameters:
customInterval¶ – Custom Interval is used to set non-standard time interval, for example, if the series is 5 minutes, request can be set as granularity=minutely, customInterval=5.
- setCustomIntervalCol(value)[source]
- Parameters:
customInterval¶ – Custom Interval is used to set non-standard time interval, for example, if the series is 5 minutes, request can be set as granularity=minutely, customInterval=5.
- setGranularity(value)[source]
- Parameters:
granularity¶ – Can only be one of yearly, monthly, weekly, daily, hourly or minutely. Granularity is used for verify whether input series is valid.
- setGranularityCol(value)[source]
- Parameters:
granularity¶ – Can only be one of yearly, monthly, weekly, daily, hourly or minutely. Granularity is used for verify whether input series is valid.
- setImputeFixedValue(value)[source]
- Parameters:
imputeFixedValue¶ – Optional argument, fixed value to use when imputeMode is set to “fixed”
- setImputeFixedValueCol(value)[source]
- Parameters:
imputeFixedValue¶ – Optional argument, fixed value to use when imputeMode is set to “fixed”
- setImputeMode(value)[source]
- Parameters:
imputeMode¶ – Optional argument, impute mode of a time series. Possible values: auto, previous, linear, fixed, zero, notFill
- setImputeModeCol(value)[source]
- Parameters:
imputeMode¶ – Optional argument, impute mode of a time series. Possible values: auto, previous, linear, fixed, zero, notFill
- setMaxAnomalyRatio(value)[source]
- Parameters:
maxAnomalyRatio¶ – Optional argument, advanced model parameter, max anomaly ratio in a time series.
- setMaxAnomalyRatioCol(value)[source]
- Parameters:
maxAnomalyRatio¶ – Optional argument, advanced model parameter, max anomaly ratio in a time series.
- setParams(AADToken=None, AADTokenCol=None, CustomAuthHeader=None, CustomAuthHeaderCol=None, concurrency=1, concurrentTimeout=None, customInterval=None, customIntervalCol=None, errorCol='SimpleDetectAnomalies_3cb1171ccd38_error', granularity=None, granularityCol=None, groupbyCol=None, handler=None, imputeFixedValue=None, imputeFixedValueCol=None, imputeMode=None, imputeModeCol=None, maxAnomalyRatio=None, maxAnomalyRatioCol=None, outputCol='SimpleDetectAnomalies_3cb1171ccd38_output', period=None, periodCol=None, sensitivity=None, sensitivityCol=None, series=None, seriesCol=None, subscriptionKey=None, subscriptionKeyCol=None, timeout=60.0, timestampCol='timestamp', url=None, valueCol='value')[source]
Set the (keyword only) parameters
- setPeriod(value)[source]
- Parameters:
period¶ – Optional argument, periodic value of a time series. If the value is null or does not present, the API will determine the period automatically.
- setPeriodCol(value)[source]
- Parameters:
period¶ – Optional argument, periodic value of a time series. If the value is null or does not present, the API will determine the period automatically.
- setSensitivity(value)[source]
- Parameters:
sensitivity¶ – Optional argument, advanced model parameter, between 0-99, the lower the value is, the larger the margin value will be which means less anomalies will be accepted
- setSensitivityCol(value)[source]
- Parameters:
sensitivity¶ – Optional argument, advanced model parameter, between 0-99, the lower the value is, the larger the margin value will be which means less anomalies will be accepted
- setSeries(value)[source]
- Parameters:
series¶ – Time series data points. Points should be sorted by timestamp in ascending order to match the anomaly detection result. If the data is not sorted correctly or there is duplicated timestamp, the API will not work. In such case, an error message will be returned.
- setSeriesCol(value)[source]
- Parameters:
series¶ – Time series data points. Points should be sorted by timestamp in ascending order to match the anomaly detection result. If the data is not sorted correctly or there is duplicated timestamp, the API will not work. In such case, an error message will be returned.
- setTimeout(value)[source]
- Parameters:
timeout¶ – number of seconds to wait before closing the connection
- setTimestampCol(value)[source]
- Parameters:
timestampCol¶ – column representing the time of the series
- subscriptionKey = Param(parent='undefined', name='subscriptionKey', doc='ServiceParam: the API key to use')
- timeout = Param(parent='undefined', name='timeout', doc='number of seconds to wait before closing the connection')
- timestampCol = Param(parent='undefined', name='timestampCol', doc='column representing the time of the series')
- url = Param(parent='undefined', name='url', doc='Url of the service')
- valueCol = Param(parent='undefined', name='valueCol', doc='column representing the value of the series')
synapse.ml.services.anomaly.SimpleDetectMultivariateAnomaly module
- class synapse.ml.services.anomaly.SimpleDetectMultivariateAnomaly.SimpleDetectMultivariateAnomaly(java_obj=None, backoffs=[100, 500, 1000], diagnosticsInfo=None, endTime=None, errorCol='SimpleDetectMultivariateAnomaly_0b15773fce71_error', handler=None, initialPollingDelay=300, inputCols=None, intermediateSaveDir=None, maxPollingRetries=1000, modelId=None, outputCol='SimpleDetectMultivariateAnomaly_0b15773fce71_output', pollingDelay=300, startTime=None, subscriptionKey=None, subscriptionKeyCol=None, suppressMaxRetriesException=False, timestampCol='timestamp', topContributorCount=10, url=None)[source]
Bases:
ComplexParamsMixin
,JavaMLReadable
,JavaMLWritable
,JavaModel
- Parameters:
diagnosticsInfo¶ (object) – diagnosticsInfo for training a multivariate anomaly detection model
endTime¶ (str) – A required field, end time of data to be used for detection/generating multivariate anomaly detection model, should be date-time.
handler¶ (object) – Which strategy to use when handling requests
initialPollingDelay¶ (int) – number of milliseconds to wait before first poll for result
intermediateSaveDir¶ (str) – Blob storage location in HDFS where intermediate data is saved while training.
pollingDelay¶ (int) – number of milliseconds to wait between polling
startTime¶ (str) – A required field, start time of data to be used for detection/generating multivariate anomaly detection model, should be date-time.
suppressMaxRetriesException¶ (bool) – set true to suppress the maxumimum retries exception and report in the error column
topContributorCount¶ (int) – This is a number that you could specify N from 1 to 30, which will give you the details of top N contributed variables in the anomaly results. For example, if you have 100 variables in the model, but you only care the top five contributed variables in detection results, then you should fill this field with 5. The default number is 10.
- backoffs = Param(parent='undefined', name='backoffs', doc='array of backoffs to use in the handler')
- diagnosticsInfo = Param(parent='undefined', name='diagnosticsInfo', doc='diagnosticsInfo for training a multivariate anomaly detection model')
- endTime = Param(parent='undefined', name='endTime', doc='A required field, end time of data to be used for detection/generating multivariate anomaly detection model, should be date-time.')
- errorCol = Param(parent='undefined', name='errorCol', doc='column to hold http errors')
- getDiagnosticsInfo()[source]
- Returns:
diagnosticsInfo for training a multivariate anomaly detection model
- Return type:
diagnosticsInfo
- getEndTime()[source]
- Returns:
A required field, end time of data to be used for detection/generating multivariate anomaly detection model, should be date-time.
- Return type:
endTime
- getInitialPollingDelay()[source]
- Returns:
number of milliseconds to wait before first poll for result
- Return type:
initialPollingDelay
- getIntermediateSaveDir()[source]
- Returns:
Blob storage location in HDFS where intermediate data is saved while training.
- Return type:
intermediateSaveDir
- getPollingDelay()[source]
- Returns:
number of milliseconds to wait between polling
- Return type:
pollingDelay
- getStartTime()[source]
- Returns:
A required field, start time of data to be used for detection/generating multivariate anomaly detection model, should be date-time.
- Return type:
startTime
- getSuppressMaxRetriesException()[source]
- Returns:
set true to suppress the maxumimum retries exception and report in the error column
- Return type:
suppressMaxRetriesException
- getTopContributorCount()[source]
- Returns:
This is a number that you could specify N from 1 to 30, which will give you the details of top N contributed variables in the anomaly results. For example, if you have 100 variables in the model, but you only care the top five contributed variables in detection results, then you should fill this field with 5. The default number is 10.
- Return type:
topContributorCount
- handler = Param(parent='undefined', name='handler', doc='Which strategy to use when handling requests')
- initialPollingDelay = Param(parent='undefined', name='initialPollingDelay', doc='number of milliseconds to wait before first poll for result')
- inputCols = Param(parent='undefined', name='inputCols', doc='The names of the input columns')
- intermediateSaveDir = Param(parent='undefined', name='intermediateSaveDir', doc='Blob storage location in HDFS where intermediate data is saved while training.')
- maxPollingRetries = Param(parent='undefined', name='maxPollingRetries', doc='number of times to poll')
- modelId = Param(parent='undefined', name='modelId', doc='Format - uuid. Model identifier.')
- outputCol = Param(parent='undefined', name='outputCol', doc='The name of the output column')
- pollingDelay = Param(parent='undefined', name='pollingDelay', doc='number of milliseconds to wait between polling')
- setDiagnosticsInfo(value)[source]
- Parameters:
diagnosticsInfo¶ – diagnosticsInfo for training a multivariate anomaly detection model
- setEndTime(value)[source]
- Parameters:
endTime¶ – A required field, end time of data to be used for detection/generating multivariate anomaly detection model, should be date-time.
- setInitialPollingDelay(value)[source]
- Parameters:
initialPollingDelay¶ – number of milliseconds to wait before first poll for result
- setIntermediateSaveDir(value)[source]
- Parameters:
intermediateSaveDir¶ – Blob storage location in HDFS where intermediate data is saved while training.
- setParams(backoffs=[100, 500, 1000], diagnosticsInfo=None, endTime=None, errorCol='SimpleDetectMultivariateAnomaly_0b15773fce71_error', handler=None, initialPollingDelay=300, inputCols=None, intermediateSaveDir=None, maxPollingRetries=1000, modelId=None, outputCol='SimpleDetectMultivariateAnomaly_0b15773fce71_output', pollingDelay=300, startTime=None, subscriptionKey=None, subscriptionKeyCol=None, suppressMaxRetriesException=False, timestampCol='timestamp', topContributorCount=10, url=None)[source]
Set the (keyword only) parameters
- setPollingDelay(value)[source]
- Parameters:
pollingDelay¶ – number of milliseconds to wait between polling
- setStartTime(value)[source]
- Parameters:
startTime¶ – A required field, start time of data to be used for detection/generating multivariate anomaly detection model, should be date-time.
- setSuppressMaxRetriesException(value)[source]
- Parameters:
suppressMaxRetriesException¶ – set true to suppress the maxumimum retries exception and report in the error column
- setTopContributorCount(value)[source]
- Parameters:
topContributorCount¶ – This is a number that you could specify N from 1 to 30, which will give you the details of top N contributed variables in the anomaly results. For example, if you have 100 variables in the model, but you only care the top five contributed variables in detection results, then you should fill this field with 5. The default number is 10.
- startTime = Param(parent='undefined', name='startTime', doc='A required field, start time of data to be used for detection/generating multivariate anomaly detection model, should be date-time.')
- subscriptionKey = Param(parent='undefined', name='subscriptionKey', doc='ServiceParam: the API key to use')
- suppressMaxRetriesException = Param(parent='undefined', name='suppressMaxRetriesException', doc='set true to suppress the maxumimum retries exception and report in the error column')
- timestampCol = Param(parent='undefined', name='timestampCol', doc='Timestamp column name')
- topContributorCount = Param(parent='undefined', name='topContributorCount', doc='This is a number that you could specify N from 1 to 30, which will give you the details of top N contributed variables in the anomaly results. For example, if you have 100 variables in the model, but you only care the top five contributed variables in detection results, then you should fill this field with 5. The default number is 10.')
- url = Param(parent='undefined', name='url', doc='Url of the service')
synapse.ml.services.anomaly.SimpleFitMultivariateAnomaly module
- class synapse.ml.services.anomaly.SimpleFitMultivariateAnomaly.SimpleFitMultivariateAnomaly(java_obj=None, alignMode='Outer', backoffs=[100, 500, 1000], displayName=None, endTime=None, errorCol='SimpleFitMultivariateAnomaly_d2a2be301541_error', fillNAMethod='Linear', initialPollingDelay=300, inputCols=None, intermediateSaveDir=None, maxPollingRetries=1000, outputCol='SimpleFitMultivariateAnomaly_d2a2be301541_output', paddingValue=None, pollingDelay=300, slidingWindow=300, startTime=None, subscriptionKey=None, subscriptionKeyCol=None, suppressMaxRetriesException=False, timestampCol='timestamp', url=None)[source]
Bases:
ComplexParamsMixin
,JavaMLReadable
,JavaMLWritable
,JavaEstimator
- Parameters:
alignMode¶ (str) – An optional field, indicates how we align different variables into the same time-range which is required by the model.{Inner, Outer}
endTime¶ (str) – A required field, end time of data to be used for detection/generating multivariate anomaly detection model, should be date-time.
fillNAMethod¶ (str) – An optional field, indicates how missed values will be filled with. Can not be set to NotFill, when alignMode is Outer.{Previous, Subsequent, Linear, Zero, Fixed}
initialPollingDelay¶ (int) – number of milliseconds to wait before first poll for result
intermediateSaveDir¶ (str) – Blob storage location in HDFS where intermediate data is saved while training.
paddingValue¶ (int) – optional field, is only useful if FillNAMethod is set to Fixed.
pollingDelay¶ (int) – number of milliseconds to wait between polling
slidingWindow¶ (int) – An optional field, indicates how many history points will be used to determine the anomaly score of one subsequent point.
startTime¶ (str) – A required field, start time of data to be used for detection/generating multivariate anomaly detection model, should be date-time.
suppressMaxRetriesException¶ (bool) – set true to suppress the maxumimum retries exception and report in the error column
- alignMode = Param(parent='undefined', name='alignMode', doc='An optional field, indicates how we align different variables into the same time-range which is required by the model.{Inner, Outer}')
- backoffs = Param(parent='undefined', name='backoffs', doc='array of backoffs to use in the handler')
- displayName = Param(parent='undefined', name='displayName', doc='optional field, name of the model')
- endTime = Param(parent='undefined', name='endTime', doc='A required field, end time of data to be used for detection/generating multivariate anomaly detection model, should be date-time.')
- errorCol = Param(parent='undefined', name='errorCol', doc='column to hold http errors')
- fillNAMethod = Param(parent='undefined', name='fillNAMethod', doc='An optional field, indicates how missed values will be filled with. Can not be set to NotFill, when alignMode is Outer.{Previous, Subsequent, Linear, Zero, Fixed}')
- getAlignMode()[source]
- Returns:
An optional field, indicates how we align different variables into the same time-range which is required by the model.{Inner, Outer}
- Return type:
alignMode
- getEndTime()[source]
- Returns:
A required field, end time of data to be used for detection/generating multivariate anomaly detection model, should be date-time.
- Return type:
endTime
- getFillNAMethod()[source]
- Returns:
An optional field, indicates how missed values will be filled with. Can not be set to NotFill, when alignMode is Outer.{Previous, Subsequent, Linear, Zero, Fixed}
- Return type:
fillNAMethod
- getInitialPollingDelay()[source]
- Returns:
number of milliseconds to wait before first poll for result
- Return type:
initialPollingDelay
- getIntermediateSaveDir()[source]
- Returns:
Blob storage location in HDFS where intermediate data is saved while training.
- Return type:
intermediateSaveDir
- getPaddingValue()[source]
- Returns:
optional field, is only useful if FillNAMethod is set to Fixed.
- Return type:
paddingValue
- getPollingDelay()[source]
- Returns:
number of milliseconds to wait between polling
- Return type:
pollingDelay
- getSlidingWindow()[source]
- Returns:
An optional field, indicates how many history points will be used to determine the anomaly score of one subsequent point.
- Return type:
slidingWindow
- getStartTime()[source]
- Returns:
A required field, start time of data to be used for detection/generating multivariate anomaly detection model, should be date-time.
- Return type:
startTime
- getSuppressMaxRetriesException()[source]
- Returns:
set true to suppress the maxumimum retries exception and report in the error column
- Return type:
suppressMaxRetriesException
- initialPollingDelay = Param(parent='undefined', name='initialPollingDelay', doc='number of milliseconds to wait before first poll for result')
- inputCols = Param(parent='undefined', name='inputCols', doc='The names of the input columns')
- intermediateSaveDir = Param(parent='undefined', name='intermediateSaveDir', doc='Blob storage location in HDFS where intermediate data is saved while training.')
- maxPollingRetries = Param(parent='undefined', name='maxPollingRetries', doc='number of times to poll')
- outputCol = Param(parent='undefined', name='outputCol', doc='The name of the output column')
- paddingValue = Param(parent='undefined', name='paddingValue', doc='optional field, is only useful if FillNAMethod is set to Fixed.')
- pollingDelay = Param(parent='undefined', name='pollingDelay', doc='number of milliseconds to wait between polling')
- setAlignMode(value)[source]
- Parameters:
alignMode¶ – An optional field, indicates how we align different variables into the same time-range which is required by the model.{Inner, Outer}
- setEndTime(value)[source]
- Parameters:
endTime¶ – A required field, end time of data to be used for detection/generating multivariate anomaly detection model, should be date-time.
- setFillNAMethod(value)[source]
- Parameters:
fillNAMethod¶ – An optional field, indicates how missed values will be filled with. Can not be set to NotFill, when alignMode is Outer.{Previous, Subsequent, Linear, Zero, Fixed}
- setInitialPollingDelay(value)[source]
- Parameters:
initialPollingDelay¶ – number of milliseconds to wait before first poll for result
- setIntermediateSaveDir(value)[source]
- Parameters:
intermediateSaveDir¶ – Blob storage location in HDFS where intermediate data is saved while training.
- setPaddingValue(value)[source]
- Parameters:
paddingValue¶ – optional field, is only useful if FillNAMethod is set to Fixed.
- setParams(alignMode='Outer', backoffs=[100, 500, 1000], displayName=None, endTime=None, errorCol='SimpleFitMultivariateAnomaly_d2a2be301541_error', fillNAMethod='Linear', initialPollingDelay=300, inputCols=None, intermediateSaveDir=None, maxPollingRetries=1000, outputCol='SimpleFitMultivariateAnomaly_d2a2be301541_output', paddingValue=None, pollingDelay=300, slidingWindow=300, startTime=None, subscriptionKey=None, subscriptionKeyCol=None, suppressMaxRetriesException=False, timestampCol='timestamp', url=None)[source]
Set the (keyword only) parameters
- setPollingDelay(value)[source]
- Parameters:
pollingDelay¶ – number of milliseconds to wait between polling
- setSlidingWindow(value)[source]
- Parameters:
slidingWindow¶ – An optional field, indicates how many history points will be used to determine the anomaly score of one subsequent point.
- setStartTime(value)[source]
- Parameters:
startTime¶ – A required field, start time of data to be used for detection/generating multivariate anomaly detection model, should be date-time.
- setSuppressMaxRetriesException(value)[source]
- Parameters:
suppressMaxRetriesException¶ – set true to suppress the maxumimum retries exception and report in the error column
- slidingWindow = Param(parent='undefined', name='slidingWindow', doc='An optional field, indicates how many history points will be used to determine the anomaly score of one subsequent point.')
- startTime = Param(parent='undefined', name='startTime', doc='A required field, start time of data to be used for detection/generating multivariate anomaly detection model, should be date-time.')
- subscriptionKey = Param(parent='undefined', name='subscriptionKey', doc='ServiceParam: the API key to use')
- suppressMaxRetriesException = Param(parent='undefined', name='suppressMaxRetriesException', doc='set true to suppress the maxumimum retries exception and report in the error column')
- timestampCol = Param(parent='undefined', name='timestampCol', doc='Timestamp column name')
- url = Param(parent='undefined', name='url', doc='Url of the service')
Module contents
SynapseML is an ecosystem of tools aimed towards expanding the distributed computing framework Apache Spark in several new directions. SynapseML adds many deep learning and data science tools to the Spark ecosystem, including seamless integration of Spark Machine Learning pipelines with Microsoft Cognitive Toolkit (CNTK), LightGBM and OpenCV. These tools enable powerful and highly-scalable predictive and analytical models for a variety of datasources.
SynapseML also brings new networking capabilities to the Spark Ecosystem. With the HTTP on Spark project, users can embed any web service into their SparkML models. In this vein, SynapseML provides easy to use SparkML transformers for a wide variety of Microsoft Cognitive Services. For production grade deployment, the Spark Serving project enables high throughput, sub-millisecond latency web services, backed by your Spark cluster.
SynapseML requires Scala 2.12, Spark 3.0+, and Python 3.6+.