Source code for synapse.ml.causal.DoubleMLEstimator

# Copyright (C) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See LICENSE in project root for information.


import sys
if sys.version >= '3':
    basestring = str

from pyspark import SparkContext, SQLContext
from pyspark.sql import DataFrame
from pyspark.ml.param.shared import *
from pyspark import keyword_only
from pyspark.ml.util import JavaMLReadable, JavaMLWritable
from synapse.ml.core.platform import running_on_synapse_internal
from synapse.ml.core.serialize.java_params_patch import *
from pyspark.ml.wrapper import JavaTransformer, JavaEstimator, JavaModel
from pyspark.ml.evaluation import JavaEvaluator
from pyspark.ml.common import inherit_doc
from synapse.ml.core.schema.Utils import *
from pyspark.ml.param import TypeConverters
from synapse.ml.core.schema.TypeConversionUtils import generateTypeConverter, complexTypeConverter
from synapse.ml.causal.DoubleMLModel import DoubleMLModel

[docs]@inherit_doc class DoubleMLEstimator(ComplexParamsMixin, JavaMLReadable, JavaMLWritable, JavaEstimator): """ Args: confidenceLevel (float): confidence level, default value is 0.975 featuresCol (str): The name of the features column maxIter (int): maximum number of iterations (>= 0) outcomeCol (str): outcome column outcomeModel (object): outcome model to run parallelism (int): the number of threads to use when running parallel algorithms sampleSplitRatio (list): Sample split ratio for cross-fitting. Default: [0.5, 0.5]. treatmentCol (str): treatment column treatmentModel (object): treatment model to run weightCol (str): The name of the weight column """ confidenceLevel = Param(Params._dummy(), "confidenceLevel", "confidence level, default value is 0.975", typeConverter=TypeConverters.toFloat) featuresCol = Param(Params._dummy(), "featuresCol", "The name of the features column", typeConverter=TypeConverters.toString) maxIter = Param(Params._dummy(), "maxIter", "maximum number of iterations (>= 0)", typeConverter=TypeConverters.toInt) outcomeCol = Param(Params._dummy(), "outcomeCol", "outcome column", typeConverter=TypeConverters.toString) outcomeModel = Param(Params._dummy(), "outcomeModel", "outcome model to run") parallelism = Param(Params._dummy(), "parallelism", "the number of threads to use when running parallel algorithms", typeConverter=TypeConverters.toInt) sampleSplitRatio = Param(Params._dummy(), "sampleSplitRatio", "Sample split ratio for cross-fitting. Default: [0.5, 0.5].", typeConverter=TypeConverters.toListFloat) treatmentCol = Param(Params._dummy(), "treatmentCol", "treatment column", typeConverter=TypeConverters.toString) treatmentModel = Param(Params._dummy(), "treatmentModel", "treatment model to run") weightCol = Param(Params._dummy(), "weightCol", "The name of the weight column", typeConverter=TypeConverters.toString) @keyword_only def __init__( self, java_obj=None, confidenceLevel=0.975, featuresCol=None, maxIter=1, outcomeCol=None, outcomeModel=None, parallelism=10, sampleSplitRatio=[0.5,0.5], treatmentCol=None, treatmentModel=None, weightCol=None ): super(DoubleMLEstimator, self).__init__() if java_obj is None: self._java_obj = self._new_java_obj("com.microsoft.azure.synapse.ml.causal.DoubleMLEstimator", self.uid) else: self._java_obj = java_obj self._setDefault(confidenceLevel=0.975) self._setDefault(maxIter=1) self._setDefault(parallelism=10) self._setDefault(sampleSplitRatio=[0.5,0.5]) if hasattr(self, "_input_kwargs"): kwargs = self._input_kwargs else: kwargs = self.__init__._input_kwargs if java_obj is None: for k,v in kwargs.items(): if v is not None: getattr(self, "set" + k[0].upper() + k[1:])(v)
[docs] @keyword_only def setParams( self, confidenceLevel=0.975, featuresCol=None, maxIter=1, outcomeCol=None, outcomeModel=None, parallelism=10, sampleSplitRatio=[0.5,0.5], treatmentCol=None, treatmentModel=None, weightCol=None ): """ Set the (keyword only) parameters """ if hasattr(self, "_input_kwargs"): kwargs = self._input_kwargs else: kwargs = self.__init__._input_kwargs return self._set(**kwargs)
[docs] @classmethod def read(cls): """ Returns an MLReader instance for this class. """ return JavaMMLReader(cls)
[docs] @staticmethod def getJavaPackage(): """ Returns package name String. """ return "com.microsoft.azure.synapse.ml.causal.DoubleMLEstimator"
@staticmethod def _from_java(java_stage): module_name=DoubleMLEstimator.__module__ module_name=module_name.rsplit(".", 1)[0] + ".DoubleMLEstimator" return from_java(java_stage, module_name)
[docs] def setConfidenceLevel(self, value): """ Args: confidenceLevel: confidence level, default value is 0.975 """ self._set(confidenceLevel=value) return self
[docs] def setFeaturesCol(self, value): """ Args: featuresCol: The name of the features column """ self._set(featuresCol=value) return self
[docs] def setMaxIter(self, value): """ Args: maxIter: maximum number of iterations (>= 0) """ self._set(maxIter=value) return self
[docs] def setOutcomeCol(self, value): """ Args: outcomeCol: outcome column """ self._set(outcomeCol=value) return self
[docs] def setOutcomeModel(self, value): """ Args: outcomeModel: outcome model to run """ self._set(outcomeModel=value) return self
[docs] def setParallelism(self, value): """ Args: parallelism: the number of threads to use when running parallel algorithms """ self._set(parallelism=value) return self
[docs] def setSampleSplitRatio(self, value): """ Args: sampleSplitRatio: Sample split ratio for cross-fitting. Default: [0.5, 0.5]. """ self._set(sampleSplitRatio=value) return self
[docs] def setTreatmentCol(self, value): """ Args: treatmentCol: treatment column """ self._set(treatmentCol=value) return self
[docs] def setTreatmentModel(self, value): """ Args: treatmentModel: treatment model to run """ self._set(treatmentModel=value) return self
[docs] def setWeightCol(self, value): """ Args: weightCol: The name of the weight column """ self._set(weightCol=value) return self
[docs] def getConfidenceLevel(self): """ Returns: confidenceLevel: confidence level, default value is 0.975 """ return self.getOrDefault(self.confidenceLevel)
[docs] def getFeaturesCol(self): """ Returns: featuresCol: The name of the features column """ return self.getOrDefault(self.featuresCol)
[docs] def getMaxIter(self): """ Returns: maxIter: maximum number of iterations (>= 0) """ return self.getOrDefault(self.maxIter)
[docs] def getOutcomeCol(self): """ Returns: outcomeCol: outcome column """ return self.getOrDefault(self.outcomeCol)
[docs] def getOutcomeModel(self): """ Returns: outcomeModel: outcome model to run """ return JavaParams._from_java(self._java_obj.getOutcomeModel())
[docs] def getParallelism(self): """ Returns: parallelism: the number of threads to use when running parallel algorithms """ return self.getOrDefault(self.parallelism)
[docs] def getSampleSplitRatio(self): """ Returns: sampleSplitRatio: Sample split ratio for cross-fitting. Default: [0.5, 0.5]. """ return self.getOrDefault(self.sampleSplitRatio)
[docs] def getTreatmentCol(self): """ Returns: treatmentCol: treatment column """ return self.getOrDefault(self.treatmentCol)
[docs] def getTreatmentModel(self): """ Returns: treatmentModel: treatment model to run """ return JavaParams._from_java(self._java_obj.getTreatmentModel())
[docs] def getWeightCol(self): """ Returns: weightCol: The name of the weight column """ return self.getOrDefault(self.weightCol)
def _create_model(self, java_model): try: model = DoubleMLModel(java_obj=java_model) model._transfer_params_from_java() except TypeError: model = DoubleMLModel._from_java(java_model) return model def _fit(self, dataset): java_model = self._fit_java(dataset) return self._create_model(java_model)