# Copyright (C) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See LICENSE in project root for information.
import sys
if sys.version >= '3':
basestring = str
from pyspark import SparkContext, SQLContext
from pyspark.sql import DataFrame
from pyspark.ml.param.shared import *
from pyspark import keyword_only
from pyspark.ml.util import JavaMLReadable, JavaMLWritable
from synapse.ml.core.platform import running_on_synapse_internal
from synapse.ml.core.serialize.java_params_patch import *
from pyspark.ml.wrapper import JavaTransformer, JavaEstimator, JavaModel
from pyspark.ml.evaluation import JavaEvaluator
from pyspark.ml.common import inherit_doc
from synapse.ml.core.schema.Utils import *
from pyspark.ml.param import TypeConverters
from synapse.ml.core.schema.TypeConversionUtils import generateTypeConverter, complexTypeConverter
[docs]@inherit_doc
class SimpleDetectMultivariateAnomaly(ComplexParamsMixin, JavaMLReadable, JavaMLWritable, JavaModel):
"""
Args:
backoffs (list): array of backoffs to use in the handler
diagnosticsInfo (object): diagnosticsInfo for training a multivariate anomaly detection model
endTime (str): A required field, end time of data to be used for detection/generating multivariate anomaly detection model, should be date-time.
errorCol (str): column to hold http errors
handler (object): Which strategy to use when handling requests
initialPollingDelay (int): number of milliseconds to wait before first poll for result
inputCols (list): The names of the input columns
intermediateSaveDir (str): Blob storage location in HDFS where intermediate data is saved while training.
maxPollingRetries (int): number of times to poll
modelId (str): Format - uuid. Model identifier.
outputCol (str): The name of the output column
pollingDelay (int): number of milliseconds to wait between polling
startTime (str): A required field, start time of data to be used for detection/generating multivariate anomaly detection model, should be date-time.
subscriptionKey (object): the API key to use
suppressMaxRetriesException (bool): set true to suppress the maxumimum retries exception and report in the error column
timestampCol (str): Timestamp column name
topContributorCount (int): This is a number that you could specify N from 1 to 30, which will give you the details of top N contributed variables in the anomaly results. For example, if you have 100 variables in the model, but you only care the top five contributed variables in detection results, then you should fill this field with 5. The default number is 10.
url (str): Url of the service
"""
backoffs = Param(Params._dummy(), "backoffs", "array of backoffs to use in the handler", typeConverter=TypeConverters.toListInt)
diagnosticsInfo = Param(Params._dummy(), "diagnosticsInfo", "diagnosticsInfo for training a multivariate anomaly detection model")
endTime = Param(Params._dummy(), "endTime", "A required field, end time of data to be used for detection/generating multivariate anomaly detection model, should be date-time.", typeConverter=TypeConverters.toString)
errorCol = Param(Params._dummy(), "errorCol", "column to hold http errors", typeConverter=TypeConverters.toString)
handler = Param(Params._dummy(), "handler", "Which strategy to use when handling requests")
initialPollingDelay = Param(Params._dummy(), "initialPollingDelay", "number of milliseconds to wait before first poll for result", typeConverter=TypeConverters.toInt)
inputCols = Param(Params._dummy(), "inputCols", "The names of the input columns", typeConverter=TypeConverters.toListString)
intermediateSaveDir = Param(Params._dummy(), "intermediateSaveDir", "Blob storage location in HDFS where intermediate data is saved while training.", typeConverter=TypeConverters.toString)
maxPollingRetries = Param(Params._dummy(), "maxPollingRetries", "number of times to poll", typeConverter=TypeConverters.toInt)
modelId = Param(Params._dummy(), "modelId", "Format - uuid. Model identifier.", typeConverter=TypeConverters.toString)
outputCol = Param(Params._dummy(), "outputCol", "The name of the output column", typeConverter=TypeConverters.toString)
pollingDelay = Param(Params._dummy(), "pollingDelay", "number of milliseconds to wait between polling", typeConverter=TypeConverters.toInt)
startTime = Param(Params._dummy(), "startTime", "A required field, start time of data to be used for detection/generating multivariate anomaly detection model, should be date-time.", typeConverter=TypeConverters.toString)
subscriptionKey = Param(Params._dummy(), "subscriptionKey", "ServiceParam: the API key to use")
suppressMaxRetriesException = Param(Params._dummy(), "suppressMaxRetriesException", "set true to suppress the maxumimum retries exception and report in the error column", typeConverter=TypeConverters.toBoolean)
timestampCol = Param(Params._dummy(), "timestampCol", "Timestamp column name", typeConverter=TypeConverters.toString)
topContributorCount = Param(Params._dummy(), "topContributorCount", "This is a number that you could specify N from 1 to 30, which will give you the details of top N contributed variables in the anomaly results. For example, if you have 100 variables in the model, but you only care the top five contributed variables in detection results, then you should fill this field with 5. The default number is 10.", typeConverter=TypeConverters.toInt)
url = Param(Params._dummy(), "url", "Url of the service", typeConverter=TypeConverters.toString)
@keyword_only
def __init__(
self,
java_obj=None,
backoffs=[100,500,1000],
diagnosticsInfo=None,
endTime=None,
errorCol="SimpleDetectMultivariateAnomaly_558995a24014_error",
handler=None,
initialPollingDelay=300,
inputCols=None,
intermediateSaveDir=None,
maxPollingRetries=1000,
modelId=None,
outputCol="SimpleDetectMultivariateAnomaly_558995a24014_output",
pollingDelay=300,
startTime=None,
subscriptionKey=None,
subscriptionKeyCol=None,
suppressMaxRetriesException=False,
timestampCol="timestamp",
topContributorCount=10,
url=None
):
super(SimpleDetectMultivariateAnomaly, self).__init__()
if java_obj is None:
self._java_obj = self._new_java_obj("com.microsoft.azure.synapse.ml.services.anomaly.SimpleDetectMultivariateAnomaly", self.uid)
else:
self._java_obj = java_obj
self._setDefault(backoffs=[100,500,1000])
self._setDefault(errorCol="SimpleDetectMultivariateAnomaly_558995a24014_error")
self._setDefault(initialPollingDelay=300)
self._setDefault(maxPollingRetries=1000)
self._setDefault(outputCol="SimpleDetectMultivariateAnomaly_558995a24014_output")
self._setDefault(pollingDelay=300)
self._setDefault(suppressMaxRetriesException=False)
self._setDefault(timestampCol="timestamp")
self._setDefault(topContributorCount=10)
if hasattr(self, "_input_kwargs"):
kwargs = self._input_kwargs
else:
kwargs = self.__init__._input_kwargs
if java_obj is None:
for k,v in kwargs.items():
if v is not None:
getattr(self, "set" + k[0].upper() + k[1:])(v)
[docs] @keyword_only
def setParams(
self,
backoffs=[100,500,1000],
diagnosticsInfo=None,
endTime=None,
errorCol="SimpleDetectMultivariateAnomaly_558995a24014_error",
handler=None,
initialPollingDelay=300,
inputCols=None,
intermediateSaveDir=None,
maxPollingRetries=1000,
modelId=None,
outputCol="SimpleDetectMultivariateAnomaly_558995a24014_output",
pollingDelay=300,
startTime=None,
subscriptionKey=None,
subscriptionKeyCol=None,
suppressMaxRetriesException=False,
timestampCol="timestamp",
topContributorCount=10,
url=None
):
"""
Set the (keyword only) parameters
"""
if hasattr(self, "_input_kwargs"):
kwargs = self._input_kwargs
else:
kwargs = self.__init__._input_kwargs
return self._set(**kwargs)
[docs] @classmethod
def read(cls):
""" Returns an MLReader instance for this class. """
return JavaMMLReader(cls)
[docs] @staticmethod
def getJavaPackage():
""" Returns package name String. """
return "com.microsoft.azure.synapse.ml.services.anomaly.SimpleDetectMultivariateAnomaly"
@staticmethod
def _from_java(java_stage):
module_name=SimpleDetectMultivariateAnomaly.__module__
module_name=module_name.rsplit(".", 1)[0] + ".SimpleDetectMultivariateAnomaly"
return from_java(java_stage, module_name)
[docs] def setBackoffs(self, value):
"""
Args:
backoffs: array of backoffs to use in the handler
"""
self._set(backoffs=value)
return self
[docs] def setDiagnosticsInfo(self, value):
"""
Args:
diagnosticsInfo: diagnosticsInfo for training a multivariate anomaly detection model
"""
self._set(diagnosticsInfo=value)
return self
[docs] def setEndTime(self, value):
"""
Args:
endTime: A required field, end time of data to be used for detection/generating multivariate anomaly detection model, should be date-time.
"""
self._set(endTime=value)
return self
[docs] def setErrorCol(self, value):
"""
Args:
errorCol: column to hold http errors
"""
self._set(errorCol=value)
return self
[docs] def setHandler(self, value):
"""
Args:
handler: Which strategy to use when handling requests
"""
self._set(handler=value)
return self
[docs] def setInitialPollingDelay(self, value):
"""
Args:
initialPollingDelay: number of milliseconds to wait before first poll for result
"""
self._set(initialPollingDelay=value)
return self
[docs] def setMaxPollingRetries(self, value):
"""
Args:
maxPollingRetries: number of times to poll
"""
self._set(maxPollingRetries=value)
return self
[docs] def setModelId(self, value):
"""
Args:
modelId: Format - uuid. Model identifier.
"""
self._set(modelId=value)
return self
[docs] def setOutputCol(self, value):
"""
Args:
outputCol: The name of the output column
"""
self._set(outputCol=value)
return self
[docs] def setPollingDelay(self, value):
"""
Args:
pollingDelay: number of milliseconds to wait between polling
"""
self._set(pollingDelay=value)
return self
[docs] def setStartTime(self, value):
"""
Args:
startTime: A required field, start time of data to be used for detection/generating multivariate anomaly detection model, should be date-time.
"""
self._set(startTime=value)
return self
[docs] def setSubscriptionKey(self, value):
"""
Args:
subscriptionKey: the API key to use
"""
if isinstance(value, list):
value = SparkContext._active_spark_context._jvm.com.microsoft.azure.synapse.ml.param.ServiceParam.toSeq(value)
self._java_obj = self._java_obj.setSubscriptionKey(value)
return self
[docs] def setSubscriptionKeyCol(self, value):
"""
Args:
subscriptionKey: the API key to use
"""
self._java_obj = self._java_obj.setSubscriptionKeyCol(value)
return self
[docs] def setSuppressMaxRetriesException(self, value):
"""
Args:
suppressMaxRetriesException: set true to suppress the maxumimum retries exception and report in the error column
"""
self._set(suppressMaxRetriesException=value)
return self
[docs] def setTimestampCol(self, value):
"""
Args:
timestampCol: Timestamp column name
"""
self._set(timestampCol=value)
return self
[docs] def setTopContributorCount(self, value):
"""
Args:
topContributorCount: This is a number that you could specify N from 1 to 30, which will give you the details of top N contributed variables in the anomaly results. For example, if you have 100 variables in the model, but you only care the top five contributed variables in detection results, then you should fill this field with 5. The default number is 10.
"""
self._set(topContributorCount=value)
return self
[docs] def setUrl(self, value):
"""
Args:
url: Url of the service
"""
self._set(url=value)
return self
[docs] def getBackoffs(self):
"""
Returns:
backoffs: array of backoffs to use in the handler
"""
return self.getOrDefault(self.backoffs)
[docs] def getDiagnosticsInfo(self):
"""
Returns:
diagnosticsInfo: diagnosticsInfo for training a multivariate anomaly detection model
"""
return self.getOrDefault(self.diagnosticsInfo)
[docs] def getEndTime(self):
"""
Returns:
endTime: A required field, end time of data to be used for detection/generating multivariate anomaly detection model, should be date-time.
"""
return self.getOrDefault(self.endTime)
[docs] def getErrorCol(self):
"""
Returns:
errorCol: column to hold http errors
"""
return self.getOrDefault(self.errorCol)
[docs] def getHandler(self):
"""
Returns:
handler: Which strategy to use when handling requests
"""
return self.getOrDefault(self.handler)
[docs] def getInitialPollingDelay(self):
"""
Returns:
initialPollingDelay: number of milliseconds to wait before first poll for result
"""
return self.getOrDefault(self.initialPollingDelay)
[docs] def getMaxPollingRetries(self):
"""
Returns:
maxPollingRetries: number of times to poll
"""
return self.getOrDefault(self.maxPollingRetries)
[docs] def getModelId(self):
"""
Returns:
modelId: Format - uuid. Model identifier.
"""
return self.getOrDefault(self.modelId)
[docs] def getOutputCol(self):
"""
Returns:
outputCol: The name of the output column
"""
return self.getOrDefault(self.outputCol)
[docs] def getPollingDelay(self):
"""
Returns:
pollingDelay: number of milliseconds to wait between polling
"""
return self.getOrDefault(self.pollingDelay)
[docs] def getStartTime(self):
"""
Returns:
startTime: A required field, start time of data to be used for detection/generating multivariate anomaly detection model, should be date-time.
"""
return self.getOrDefault(self.startTime)
[docs] def getSubscriptionKey(self):
"""
Returns:
subscriptionKey: the API key to use
"""
return self._java_obj.getSubscriptionKey()
[docs] def getSuppressMaxRetriesException(self):
"""
Returns:
suppressMaxRetriesException: set true to suppress the maxumimum retries exception and report in the error column
"""
return self.getOrDefault(self.suppressMaxRetriesException)
[docs] def getTimestampCol(self):
"""
Returns:
timestampCol: Timestamp column name
"""
return self.getOrDefault(self.timestampCol)
[docs] def getTopContributorCount(self):
"""
Returns:
topContributorCount: This is a number that you could specify N from 1 to 30, which will give you the details of top N contributed variables in the anomaly results. For example, if you have 100 variables in the model, but you only care the top five contributed variables in detection results, then you should fill this field with 5. The default number is 10.
"""
return self.getOrDefault(self.topContributorCount)
[docs] def getUrl(self):
"""
Returns:
url: Url of the service
"""
return self.getOrDefault(self.url)
[docs] def setLocation(self, value):
self._java_obj = self._java_obj.setLocation(value)
return self