# Copyright (C) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See LICENSE in project root for information.
import sys
if sys.version >= '3':
basestring = str
from pyspark import SparkContext, SQLContext
from pyspark.sql import DataFrame
from pyspark.ml.param.shared import *
from pyspark import keyword_only
from pyspark.ml.util import JavaMLReadable, JavaMLWritable
from synapse.ml.core.platform import running_on_synapse_internal
from synapse.ml.core.serialize.java_params_patch import *
from pyspark.ml.wrapper import JavaTransformer, JavaEstimator, JavaModel
from pyspark.ml.evaluation import JavaEvaluator
from pyspark.ml.common import inherit_doc
from synapse.ml.core.schema.Utils import *
from pyspark.ml.param import TypeConverters
from synapse.ml.core.schema.TypeConversionUtils import generateTypeConverter, complexTypeConverter
[docs]@inherit_doc
class OpenAIEmbedding(ComplexParamsMixin, JavaMLReadable, JavaMLWritable, JavaTransformer):
"""
Args:
AADToken (object): AAD Token used for authentication
CustomAuthHeader (object): A Custom Value for Authorization Header
apiVersion (object): version of the api
concurrency (int): max number of concurrent calls
concurrentTimeout (float): max number seconds to wait on futures if concurrency >= 1
customHeaders (object): Map of Custom Header Key-Value Tuples.
customUrlRoot (str): The custom URL root for the service. This will not append OpenAI specific model path completions (i.e. /chat/completions) to the URL.
deploymentName (object): The name of the deployment
dimensions (object): Number of dimensions for output embeddings.
errorCol (str): column to hold http errors
handler (object): Which strategy to use when handling requests
outputCol (str): The name of the output column
subscriptionKey (object): the API key to use
text (object): Input text to get embeddings for.
timeout (float): number of seconds to wait before closing the connection
url (str): Url of the service
user (object): The ID of the end-user, for use in tracking and rate-limiting.
"""
AADToken = Param(Params._dummy(), "AADToken", "ServiceParam: AAD Token used for authentication")
CustomAuthHeader = Param(Params._dummy(), "CustomAuthHeader", "ServiceParam: A Custom Value for Authorization Header")
apiVersion = Param(Params._dummy(), "apiVersion", "ServiceParam: version of the api")
concurrency = Param(Params._dummy(), "concurrency", "max number of concurrent calls", typeConverter=TypeConverters.toInt)
concurrentTimeout = Param(Params._dummy(), "concurrentTimeout", "max number seconds to wait on futures if concurrency >= 1", typeConverter=TypeConverters.toFloat)
customHeaders = Param(Params._dummy(), "customHeaders", "ServiceParam: Map of Custom Header Key-Value Tuples.")
customUrlRoot = Param(Params._dummy(), "customUrlRoot", "The custom URL root for the service. This will not append OpenAI specific model path completions (i.e. /chat/completions) to the URL.", typeConverter=TypeConverters.toString)
deploymentName = Param(Params._dummy(), "deploymentName", "ServiceParam: The name of the deployment")
dimensions = Param(Params._dummy(), "dimensions", "ServiceParam: Number of dimensions for output embeddings.")
errorCol = Param(Params._dummy(), "errorCol", "column to hold http errors", typeConverter=TypeConverters.toString)
handler = Param(Params._dummy(), "handler", "Which strategy to use when handling requests")
outputCol = Param(Params._dummy(), "outputCol", "The name of the output column", typeConverter=TypeConverters.toString)
subscriptionKey = Param(Params._dummy(), "subscriptionKey", "ServiceParam: the API key to use")
text = Param(Params._dummy(), "text", "ServiceParam: Input text to get embeddings for.")
timeout = Param(Params._dummy(), "timeout", "number of seconds to wait before closing the connection", typeConverter=TypeConverters.toFloat)
url = Param(Params._dummy(), "url", "Url of the service", typeConverter=TypeConverters.toString)
user = Param(Params._dummy(), "user", "ServiceParam: The ID of the end-user, for use in tracking and rate-limiting.")
@keyword_only
def __init__(
self,
java_obj=None,
AADToken=None,
AADTokenCol=None,
CustomAuthHeader=None,
CustomAuthHeaderCol=None,
apiVersion=None,
apiVersionCol=None,
concurrency=1,
concurrentTimeout=None,
customHeaders=None,
customHeadersCol=None,
customUrlRoot=None,
deploymentName=None,
deploymentNameCol=None,
dimensions=None,
dimensionsCol=None,
errorCol="OpenAIEmbedding_531aa802682f_error",
handler=None,
outputCol="OpenAIEmbedding_531aa802682f_output",
subscriptionKey=None,
subscriptionKeyCol=None,
text=None,
textCol=None,
timeout=360.0,
url=None,
user=None,
userCol=None
):
super(OpenAIEmbedding, self).__init__()
if java_obj is None:
self._java_obj = self._new_java_obj("com.microsoft.azure.synapse.ml.services.openai.OpenAIEmbedding", self.uid)
else:
self._java_obj = java_obj
self._setDefault(concurrency=1)
self._setDefault(errorCol="OpenAIEmbedding_531aa802682f_error")
self._setDefault(outputCol="OpenAIEmbedding_531aa802682f_output")
self._setDefault(timeout=360.0)
if hasattr(self, "_input_kwargs"):
kwargs = self._input_kwargs
else:
kwargs = self.__init__._input_kwargs
if java_obj is None:
for k,v in kwargs.items():
if v is not None:
getattr(self, "set" + k[0].upper() + k[1:])(v)
[docs] @keyword_only
def setParams(
self,
AADToken=None,
AADTokenCol=None,
CustomAuthHeader=None,
CustomAuthHeaderCol=None,
apiVersion=None,
apiVersionCol=None,
concurrency=1,
concurrentTimeout=None,
customHeaders=None,
customHeadersCol=None,
customUrlRoot=None,
deploymentName=None,
deploymentNameCol=None,
dimensions=None,
dimensionsCol=None,
errorCol="OpenAIEmbedding_531aa802682f_error",
handler=None,
outputCol="OpenAIEmbedding_531aa802682f_output",
subscriptionKey=None,
subscriptionKeyCol=None,
text=None,
textCol=None,
timeout=360.0,
url=None,
user=None,
userCol=None
):
"""
Set the (keyword only) parameters
"""
if hasattr(self, "_input_kwargs"):
kwargs = self._input_kwargs
else:
kwargs = self.__init__._input_kwargs
return self._set(**kwargs)
[docs] @classmethod
def read(cls):
""" Returns an MLReader instance for this class. """
return JavaMMLReader(cls)
[docs] @staticmethod
def getJavaPackage():
""" Returns package name String. """
return "com.microsoft.azure.synapse.ml.services.openai.OpenAIEmbedding"
@staticmethod
def _from_java(java_stage):
module_name=OpenAIEmbedding.__module__
module_name=module_name.rsplit(".", 1)[0] + ".OpenAIEmbedding"
return from_java(java_stage, module_name)
[docs] def setAADToken(self, value):
"""
Args:
AADToken: AAD Token used for authentication
"""
if isinstance(value, list):
value = SparkContext._active_spark_context._jvm.com.microsoft.azure.synapse.ml.param.ServiceParam.toSeq(value)
self._java_obj = self._java_obj.setAADToken(value)
return self
[docs] def setAADTokenCol(self, value):
"""
Args:
AADToken: AAD Token used for authentication
"""
self._java_obj = self._java_obj.setAADTokenCol(value)
return self
[docs] def setApiVersion(self, value):
"""
Args:
apiVersion: version of the api
"""
if isinstance(value, list):
value = SparkContext._active_spark_context._jvm.com.microsoft.azure.synapse.ml.param.ServiceParam.toSeq(value)
self._java_obj = self._java_obj.setApiVersion(value)
return self
[docs] def setApiVersionCol(self, value):
"""
Args:
apiVersion: version of the api
"""
self._java_obj = self._java_obj.setApiVersionCol(value)
return self
[docs] def setConcurrency(self, value):
"""
Args:
concurrency: max number of concurrent calls
"""
self._set(concurrency=value)
return self
[docs] def setConcurrentTimeout(self, value):
"""
Args:
concurrentTimeout: max number seconds to wait on futures if concurrency >= 1
"""
self._set(concurrentTimeout=value)
return self
[docs] def setCustomUrlRoot(self, value):
"""
Args:
customUrlRoot: The custom URL root for the service. This will not append OpenAI specific model path completions (i.e. /chat/completions) to the URL.
"""
self._set(customUrlRoot=value)
return self
[docs] def setDeploymentName(self, value):
"""
Args:
deploymentName: The name of the deployment
"""
if isinstance(value, list):
value = SparkContext._active_spark_context._jvm.com.microsoft.azure.synapse.ml.param.ServiceParam.toSeq(value)
self._java_obj = self._java_obj.setDeploymentName(value)
return self
[docs] def setDeploymentNameCol(self, value):
"""
Args:
deploymentName: The name of the deployment
"""
self._java_obj = self._java_obj.setDeploymentNameCol(value)
return self
[docs] def setDimensions(self, value):
"""
Args:
dimensions: Number of dimensions for output embeddings.
"""
if isinstance(value, list):
value = SparkContext._active_spark_context._jvm.com.microsoft.azure.synapse.ml.param.ServiceParam.toSeq(value)
self._java_obj = self._java_obj.setDimensions(value)
return self
[docs] def setDimensionsCol(self, value):
"""
Args:
dimensions: Number of dimensions for output embeddings.
"""
self._java_obj = self._java_obj.setDimensionsCol(value)
return self
[docs] def setErrorCol(self, value):
"""
Args:
errorCol: column to hold http errors
"""
self._set(errorCol=value)
return self
[docs] def setHandler(self, value):
"""
Args:
handler: Which strategy to use when handling requests
"""
self._set(handler=value)
return self
[docs] def setOutputCol(self, value):
"""
Args:
outputCol: The name of the output column
"""
self._set(outputCol=value)
return self
[docs] def setSubscriptionKey(self, value):
"""
Args:
subscriptionKey: the API key to use
"""
if isinstance(value, list):
value = SparkContext._active_spark_context._jvm.com.microsoft.azure.synapse.ml.param.ServiceParam.toSeq(value)
self._java_obj = self._java_obj.setSubscriptionKey(value)
return self
[docs] def setSubscriptionKeyCol(self, value):
"""
Args:
subscriptionKey: the API key to use
"""
self._java_obj = self._java_obj.setSubscriptionKeyCol(value)
return self
[docs] def setText(self, value):
"""
Args:
text: Input text to get embeddings for.
"""
if isinstance(value, list):
value = SparkContext._active_spark_context._jvm.com.microsoft.azure.synapse.ml.param.ServiceParam.toSeq(value)
self._java_obj = self._java_obj.setText(value)
return self
[docs] def setTextCol(self, value):
"""
Args:
text: Input text to get embeddings for.
"""
self._java_obj = self._java_obj.setTextCol(value)
return self
[docs] def setTimeout(self, value):
"""
Args:
timeout: number of seconds to wait before closing the connection
"""
self._set(timeout=value)
return self
[docs] def setUrl(self, value):
"""
Args:
url: Url of the service
"""
self._set(url=value)
return self
[docs] def setUser(self, value):
"""
Args:
user: The ID of the end-user, for use in tracking and rate-limiting.
"""
if isinstance(value, list):
value = SparkContext._active_spark_context._jvm.com.microsoft.azure.synapse.ml.param.ServiceParam.toSeq(value)
self._java_obj = self._java_obj.setUser(value)
return self
[docs] def setUserCol(self, value):
"""
Args:
user: The ID of the end-user, for use in tracking and rate-limiting.
"""
self._java_obj = self._java_obj.setUserCol(value)
return self
[docs] def getAADToken(self):
"""
Returns:
AADToken: AAD Token used for authentication
"""
return self._java_obj.getAADToken()
[docs] def getApiVersion(self):
"""
Returns:
apiVersion: version of the api
"""
return self._java_obj.getApiVersion()
[docs] def getConcurrency(self):
"""
Returns:
concurrency: max number of concurrent calls
"""
return self.getOrDefault(self.concurrency)
[docs] def getConcurrentTimeout(self):
"""
Returns:
concurrentTimeout: max number seconds to wait on futures if concurrency >= 1
"""
return self.getOrDefault(self.concurrentTimeout)
[docs] def getCustomUrlRoot(self):
"""
Returns:
customUrlRoot: The custom URL root for the service. This will not append OpenAI specific model path completions (i.e. /chat/completions) to the URL.
"""
return self.getOrDefault(self.customUrlRoot)
[docs] def getDeploymentName(self):
"""
Returns:
deploymentName: The name of the deployment
"""
return self._java_obj.getDeploymentName()
[docs] def getDimensions(self):
"""
Returns:
dimensions: Number of dimensions for output embeddings.
"""
return self._java_obj.getDimensions()
[docs] def getErrorCol(self):
"""
Returns:
errorCol: column to hold http errors
"""
return self.getOrDefault(self.errorCol)
[docs] def getHandler(self):
"""
Returns:
handler: Which strategy to use when handling requests
"""
return self.getOrDefault(self.handler)
[docs] def getOutputCol(self):
"""
Returns:
outputCol: The name of the output column
"""
return self.getOrDefault(self.outputCol)
[docs] def getSubscriptionKey(self):
"""
Returns:
subscriptionKey: the API key to use
"""
return self._java_obj.getSubscriptionKey()
[docs] def getText(self):
"""
Returns:
text: Input text to get embeddings for.
"""
return self._java_obj.getText()
[docs] def getTimeout(self):
"""
Returns:
timeout: number of seconds to wait before closing the connection
"""
return self.getOrDefault(self.timeout)
[docs] def getUrl(self):
"""
Returns:
url: Url of the service
"""
return self.getOrDefault(self.url)
[docs] def getUser(self):
"""
Returns:
user: The ID of the end-user, for use in tracking and rate-limiting.
"""
return self._java_obj.getUser()
[docs] def setCustomServiceName(self, value):
self._java_obj = self._java_obj.setCustomServiceName(value)
return self
[docs] def setEndpoint(self, value):
self._java_obj = self._java_obj.setEndpoint(value)
return self
[docs] def setDefaultInternalEndpoint(self, value):
self._java_obj = self._java_obj.setDefaultInternalEndpoint(value)
return self
def _transform(self, dataset: DataFrame) -> DataFrame:
return super()._transform(dataset)