Source code for synapse.ml.stages.FixedMiniBatchTransformer
# Copyright (C) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See LICENSE in project root for information.
import sys
if sys.version >= '3':
basestring = str
from pyspark import SparkContext, SQLContext
from pyspark.sql import DataFrame
from pyspark.ml.param.shared import *
from pyspark import keyword_only
from pyspark.ml.util import JavaMLReadable, JavaMLWritable
from synapse.ml.core.platform import running_on_synapse_internal
from synapse.ml.core.serialize.java_params_patch import *
from pyspark.ml.wrapper import JavaTransformer, JavaEstimator, JavaModel
from pyspark.ml.evaluation import JavaEvaluator
from pyspark.ml.common import inherit_doc
from synapse.ml.core.schema.Utils import *
from pyspark.ml.param import TypeConverters
from synapse.ml.core.schema.TypeConversionUtils import generateTypeConverter, complexTypeConverter
[docs]@inherit_doc
class FixedMiniBatchTransformer(ComplexParamsMixin, JavaMLReadable, JavaMLWritable, JavaTransformer):
"""
Args:
batchSize (int): The max size of the buffer
buffered (bool): Whether or not to buffer batches in memory
maxBufferSize (int): The max size of the buffer
"""
batchSize = Param(Params._dummy(), "batchSize", "The max size of the buffer", typeConverter=TypeConverters.toInt)
buffered = Param(Params._dummy(), "buffered", "Whether or not to buffer batches in memory", typeConverter=TypeConverters.toBoolean)
maxBufferSize = Param(Params._dummy(), "maxBufferSize", "The max size of the buffer", typeConverter=TypeConverters.toInt)
@keyword_only
def __init__(
self,
java_obj=None,
batchSize=None,
buffered=False,
maxBufferSize=2147483647
):
super(FixedMiniBatchTransformer, self).__init__()
if java_obj is None:
self._java_obj = self._new_java_obj("com.microsoft.azure.synapse.ml.stages.FixedMiniBatchTransformer", self.uid)
else:
self._java_obj = java_obj
self._setDefault(buffered=False)
self._setDefault(maxBufferSize=2147483647)
if hasattr(self, "_input_kwargs"):
kwargs = self._input_kwargs
else:
kwargs = self.__init__._input_kwargs
if java_obj is None:
for k,v in kwargs.items():
if v is not None:
getattr(self, "set" + k[0].upper() + k[1:])(v)
[docs] @keyword_only
def setParams(
self,
batchSize=None,
buffered=False,
maxBufferSize=2147483647
):
"""
Set the (keyword only) parameters
"""
if hasattr(self, "_input_kwargs"):
kwargs = self._input_kwargs
else:
kwargs = self.__init__._input_kwargs
return self._set(**kwargs)
[docs] @classmethod
def read(cls):
""" Returns an MLReader instance for this class. """
return JavaMMLReader(cls)
[docs] @staticmethod
def getJavaPackage():
""" Returns package name String. """
return "com.microsoft.azure.synapse.ml.stages.FixedMiniBatchTransformer"
@staticmethod
def _from_java(java_stage):
module_name=FixedMiniBatchTransformer.__module__
module_name=module_name.rsplit(".", 1)[0] + ".FixedMiniBatchTransformer"
return from_java(java_stage, module_name)
[docs] def setBatchSize(self, value):
"""
Args:
batchSize: The max size of the buffer
"""
self._set(batchSize=value)
return self
[docs] def setBuffered(self, value):
"""
Args:
buffered: Whether or not to buffer batches in memory
"""
self._set(buffered=value)
return self
[docs] def setMaxBufferSize(self, value):
"""
Args:
maxBufferSize: The max size of the buffer
"""
self._set(maxBufferSize=value)
return self
[docs] def getBatchSize(self):
"""
Returns:
batchSize: The max size of the buffer
"""
return self.getOrDefault(self.batchSize)
[docs] def getBuffered(self):
"""
Returns:
buffered: Whether or not to buffer batches in memory
"""
return self.getOrDefault(self.buffered)
[docs] def getMaxBufferSize(self):
"""
Returns:
maxBufferSize: The max size of the buffer
"""
return self.getOrDefault(self.maxBufferSize)