# Copyright (C) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See LICENSE in project root for information.
import sys
if sys.version >= '3':
basestring = str
from pyspark import SparkContext, SQLContext
from pyspark.sql import DataFrame
from pyspark.ml.param.shared import *
from pyspark import keyword_only
from pyspark.ml.util import JavaMLReadable, JavaMLWritable
from synapse.ml.core.platform import running_on_synapse_internal
from synapse.ml.core.serialize.java_params_patch import *
from pyspark.ml.wrapper import JavaTransformer, JavaEstimator, JavaModel
from pyspark.ml.evaluation import JavaEvaluator
from pyspark.ml.common import inherit_doc
from synapse.ml.core.schema.Utils import *
from pyspark.ml.param import TypeConverters
from synapse.ml.core.schema.TypeConversionUtils import generateTypeConverter, complexTypeConverter
[docs]@inherit_doc
class SummarizeData(ComplexParamsMixin, JavaMLReadable, JavaMLWritable, JavaTransformer):
"""
Args:
basic (bool): Compute basic statistics
counts (bool): Compute count statistics
errorThreshold (float): Threshold for quantiles - 0 is exact
percentiles (bool): Compute percentiles
sample (bool): Compute sample statistics
"""
basic = Param(Params._dummy(), "basic", "Compute basic statistics", typeConverter=TypeConverters.toBoolean)
counts = Param(Params._dummy(), "counts", "Compute count statistics", typeConverter=TypeConverters.toBoolean)
errorThreshold = Param(Params._dummy(), "errorThreshold", "Threshold for quantiles - 0 is exact", typeConverter=TypeConverters.toFloat)
percentiles = Param(Params._dummy(), "percentiles", "Compute percentiles", typeConverter=TypeConverters.toBoolean)
sample = Param(Params._dummy(), "sample", "Compute sample statistics", typeConverter=TypeConverters.toBoolean)
@keyword_only
def __init__(
self,
java_obj=None,
basic=True,
counts=True,
errorThreshold=0.0,
percentiles=True,
sample=True
):
super(SummarizeData, self).__init__()
if java_obj is None:
self._java_obj = self._new_java_obj("com.microsoft.azure.synapse.ml.stages.SummarizeData", self.uid)
else:
self._java_obj = java_obj
self._setDefault(basic=True)
self._setDefault(counts=True)
self._setDefault(errorThreshold=0.0)
self._setDefault(percentiles=True)
self._setDefault(sample=True)
if hasattr(self, "_input_kwargs"):
kwargs = self._input_kwargs
else:
kwargs = self.__init__._input_kwargs
if java_obj is None:
for k,v in kwargs.items():
if v is not None:
getattr(self, "set" + k[0].upper() + k[1:])(v)
[docs] @keyword_only
def setParams(
self,
basic=True,
counts=True,
errorThreshold=0.0,
percentiles=True,
sample=True
):
"""
Set the (keyword only) parameters
"""
if hasattr(self, "_input_kwargs"):
kwargs = self._input_kwargs
else:
kwargs = self.__init__._input_kwargs
return self._set(**kwargs)
[docs] @classmethod
def read(cls):
""" Returns an MLReader instance for this class. """
return JavaMMLReader(cls)
[docs] @staticmethod
def getJavaPackage():
""" Returns package name String. """
return "com.microsoft.azure.synapse.ml.stages.SummarizeData"
@staticmethod
def _from_java(java_stage):
module_name=SummarizeData.__module__
module_name=module_name.rsplit(".", 1)[0] + ".SummarizeData"
return from_java(java_stage, module_name)
[docs] def setBasic(self, value):
"""
Args:
basic: Compute basic statistics
"""
self._set(basic=value)
return self
[docs] def setCounts(self, value):
"""
Args:
counts: Compute count statistics
"""
self._set(counts=value)
return self
[docs] def setErrorThreshold(self, value):
"""
Args:
errorThreshold: Threshold for quantiles - 0 is exact
"""
self._set(errorThreshold=value)
return self
[docs] def setPercentiles(self, value):
"""
Args:
percentiles: Compute percentiles
"""
self._set(percentiles=value)
return self
[docs] def setSample(self, value):
"""
Args:
sample: Compute sample statistics
"""
self._set(sample=value)
return self
[docs] def getBasic(self):
"""
Returns:
basic: Compute basic statistics
"""
return self.getOrDefault(self.basic)
[docs] def getCounts(self):
"""
Returns:
counts: Compute count statistics
"""
return self.getOrDefault(self.counts)
[docs] def getErrorThreshold(self):
"""
Returns:
errorThreshold: Threshold for quantiles - 0 is exact
"""
return self.getOrDefault(self.errorThreshold)
[docs] def getPercentiles(self):
"""
Returns:
percentiles: Compute percentiles
"""
return self.getOrDefault(self.percentiles)
[docs] def getSample(self):
"""
Returns:
sample: Compute sample statistics
"""
return self.getOrDefault(self.sample)