ImageFeaturizer implements ImageFeaturizer
More...
◆ ImageFeaturizer() [1/2]
Synapse.ML.Cntk.ImageFeaturizer.ImageFeaturizer |
( |
| ) |
|
|
inline |
◆ ImageFeaturizer() [2/2]
Synapse.ML.Cntk.ImageFeaturizer.ImageFeaturizer |
( |
string |
uid | ) |
|
|
inline |
Creates a ImageFeaturizer with a UID that is used to give the ImageFeaturizer a unique ID.
- Parameters
-
uid | An immutable unique ID for the object and its derivatives. |
◆ GetCntkModel()
JavaTransformer Synapse.ML.Cntk.ImageFeaturizer.GetCntkModel |
( |
| ) |
|
|
inline |
Gets cntkModel value
- Returns
- cntkModel: The internal CNTK model used in the featurizer
◆ GetCutOutputLayers()
int Synapse.ML.Cntk.ImageFeaturizer.GetCutOutputLayers |
( |
| ) |
|
Gets cutOutputLayers value
- Returns
- cutOutputLayers: The number of layers to cut off the end of the network, 0 leaves the network intact, 1 removes the output layer, etc
◆ GetDropNa()
bool Synapse.ML.Cntk.ImageFeaturizer.GetDropNa |
( |
| ) |
|
Gets dropNa value
- Returns
- dropNa: Whether to drop na values before mapping
◆ GetInputCol()
string Synapse.ML.Cntk.ImageFeaturizer.GetInputCol |
( |
| ) |
|
Gets inputCol value
- Returns
- inputCol: The name of the input column
◆ GetLayerNames()
string [] Synapse.ML.Cntk.ImageFeaturizer.GetLayerNames |
( |
| ) |
|
Gets layerNames value
- Returns
- layerNames: Array with valid CNTK nodes to choose from, the first entries of this array should be closer to the output node
◆ GetOutputCol()
string Synapse.ML.Cntk.ImageFeaturizer.GetOutputCol |
( |
| ) |
|
Gets outputCol value
- Returns
- outputCol: The name of the output column
◆ Load()
◆ Read()
Get the corresponding JavaMLReader instance.
- Returns
- an JavaMLReader<ImageFeaturizer> instance for this ML instance.
◆ Save()
void Synapse.ML.Cntk.ImageFeaturizer.Save |
( |
string |
path | ) |
|
Saves the object so that it can be loaded later using Load. Note that these objects can be shared with Scala by Loading or Saving in Scala.
- Parameters
-
path | The path to save the object to |
◆ SetCntkModel()
ImageFeaturizer Synapse.ML.Cntk.ImageFeaturizer.SetCntkModel |
( |
JavaTransformer |
value | ) |
|
Sets value for cntkModel
- Parameters
-
value | The internal CNTK model used in the featurizer |
- Returns
- New ImageFeaturizer object
◆ SetCutOutputLayers()
ImageFeaturizer Synapse.ML.Cntk.ImageFeaturizer.SetCutOutputLayers |
( |
int |
value | ) |
|
Sets value for cutOutputLayers
- Parameters
-
value | The number of layers to cut off the end of the network, 0 leaves the network intact, 1 removes the output layer, etc |
- Returns
- New ImageFeaturizer object
◆ SetDropNa()
Sets value for dropNa
- Parameters
-
value | Whether to drop na values before mapping |
- Returns
- New ImageFeaturizer object
◆ SetInputCol()
ImageFeaturizer Synapse.ML.Cntk.ImageFeaturizer.SetInputCol |
( |
string |
value | ) |
|
Sets value for inputCol
- Parameters
-
value | The name of the input column |
- Returns
- New ImageFeaturizer object
◆ SetLayerNames()
ImageFeaturizer Synapse.ML.Cntk.ImageFeaturizer.SetLayerNames |
( |
string [] |
value | ) |
|
Sets value for layerNames
- Parameters
-
value | Array with valid CNTK nodes to choose from, the first entries of this array should be closer to the output node |
- Returns
- New ImageFeaturizer object
◆ SetOutputCol()
ImageFeaturizer Synapse.ML.Cntk.ImageFeaturizer.SetOutputCol |
( |
string |
value | ) |
|
Sets value for outputCol
- Parameters
-
value | The name of the output column |
- Returns
- New ImageFeaturizer object
The documentation for this class was generated from the following file:
- synapse/ml/cntk/ImageFeaturizer.cs