VectorLIME implements VectorLIME
More...
◆ VectorLIME() [1/2]
Synapse.ML.Explainers.VectorLIME.VectorLIME |
( |
| ) |
|
|
inline |
◆ VectorLIME() [2/2]
Synapse.ML.Explainers.VectorLIME.VectorLIME |
( |
string |
uid | ) |
|
|
inline |
Creates a VectorLIME with a UID that is used to give the VectorLIME a unique ID.
- Parameters
-
uid | An immutable unique ID for the object and its derivatives. |
◆ GetBackgroundData()
DataFrame Synapse.ML.Explainers.VectorLIME.GetBackgroundData |
( |
| ) |
|
Gets backgroundData value
- Returns
- backgroundData: A dataframe containing background data
◆ GetInputCol()
string Synapse.ML.Explainers.VectorLIME.GetInputCol |
( |
| ) |
|
Gets inputCol value
- Returns
- inputCol: input column name
◆ GetKernelWidth()
double Synapse.ML.Explainers.VectorLIME.GetKernelWidth |
( |
| ) |
|
Gets kernelWidth value
- Returns
- kernelWidth: Kernel width. Default value: sqrt (number of features) * 0.75
◆ GetMetricsCol()
string Synapse.ML.Explainers.VectorLIME.GetMetricsCol |
( |
| ) |
|
Gets metricsCol value
- Returns
- metricsCol: Column name for fitting metrics
◆ GetModel()
JavaTransformer Synapse.ML.Explainers.VectorLIME.GetModel |
( |
| ) |
|
|
inline |
Gets model value
- Returns
- model: The model to be interpreted.
◆ GetNumSamples()
int Synapse.ML.Explainers.VectorLIME.GetNumSamples |
( |
| ) |
|
Gets numSamples value
- Returns
- numSamples: Number of samples to generate.
◆ GetOutputCol()
string Synapse.ML.Explainers.VectorLIME.GetOutputCol |
( |
| ) |
|
Gets outputCol value
- Returns
- outputCol: output column name
◆ GetRegularization()
double Synapse.ML.Explainers.VectorLIME.GetRegularization |
( |
| ) |
|
Gets regularization value
- Returns
- regularization: Regularization param for the lasso. Default value: 0.
◆ GetTargetClasses()
int [] Synapse.ML.Explainers.VectorLIME.GetTargetClasses |
( |
| ) |
|
Gets targetClasses value
- Returns
- targetClasses: The indices of the classes for multinomial classification models. Default: 0.For regression models this parameter is ignored.
◆ GetTargetClassesCol()
string Synapse.ML.Explainers.VectorLIME.GetTargetClassesCol |
( |
| ) |
|
Gets targetClassesCol value
- Returns
- targetClassesCol: The name of the column that specifies the indices of the classes for multinomial classification models.
◆ GetTargetCol()
string Synapse.ML.Explainers.VectorLIME.GetTargetCol |
( |
| ) |
|
Gets targetCol value
- Returns
- targetCol: The column name of the prediction target to explain (i.e. the response variable). This is usually set to "prediction" for regression models and "probability" for probabilistic classification models. Default value: probability
◆ Load()
static VectorLIME Synapse.ML.Explainers.VectorLIME.Load |
( |
string |
path | ) |
|
|
static |
◆ Read()
JavaMLReader<VectorLIME> Synapse.ML.Explainers.VectorLIME.Read |
( |
| ) |
|
Get the corresponding JavaMLReader instance.
- Returns
- an JavaMLReader<VectorLIME> instance for this ML instance.
◆ Save()
void Synapse.ML.Explainers.VectorLIME.Save |
( |
string |
path | ) |
|
Saves the object so that it can be loaded later using Load. Note that these objects can be shared with Scala by Loading or Saving in Scala.
- Parameters
-
path | The path to save the object to |
◆ SetBackgroundData()
VectorLIME Synapse.ML.Explainers.VectorLIME.SetBackgroundData |
( |
DataFrame |
value | ) |
|
Sets value for backgroundData
- Parameters
-
value | A dataframe containing background data |
- Returns
- New VectorLIME object
◆ SetInputCol()
VectorLIME Synapse.ML.Explainers.VectorLIME.SetInputCol |
( |
string |
value | ) |
|
Sets value for inputCol
- Parameters
-
- Returns
- New VectorLIME object
◆ SetKernelWidth()
VectorLIME Synapse.ML.Explainers.VectorLIME.SetKernelWidth |
( |
double |
value | ) |
|
Sets value for kernelWidth
- Parameters
-
value | Kernel width. Default value: sqrt (number of features) * 0.75 |
- Returns
- New VectorLIME object
◆ SetMetricsCol()
VectorLIME Synapse.ML.Explainers.VectorLIME.SetMetricsCol |
( |
string |
value | ) |
|
Sets value for metricsCol
- Parameters
-
value | Column name for fitting metrics |
- Returns
- New VectorLIME object
◆ SetModel()
VectorLIME Synapse.ML.Explainers.VectorLIME.SetModel |
( |
JavaTransformer |
value | ) |
|
Sets value for model
- Parameters
-
value | The model to be interpreted. |
- Returns
- New VectorLIME object
◆ SetNumSamples()
VectorLIME Synapse.ML.Explainers.VectorLIME.SetNumSamples |
( |
int |
value | ) |
|
Sets value for numSamples
- Parameters
-
value | Number of samples to generate. |
- Returns
- New VectorLIME object
◆ SetOutputCol()
VectorLIME Synapse.ML.Explainers.VectorLIME.SetOutputCol |
( |
string |
value | ) |
|
Sets value for outputCol
- Parameters
-
- Returns
- New VectorLIME object
◆ SetRegularization()
VectorLIME Synapse.ML.Explainers.VectorLIME.SetRegularization |
( |
double |
value | ) |
|
Sets value for regularization
- Parameters
-
value | Regularization param for the lasso. Default value: 0. |
- Returns
- New VectorLIME object
◆ SetTargetClasses()
VectorLIME Synapse.ML.Explainers.VectorLIME.SetTargetClasses |
( |
int [] |
value | ) |
|
Sets value for targetClasses
- Parameters
-
value | The indices of the classes for multinomial classification models. Default: 0.For regression models this parameter is ignored. |
- Returns
- New VectorLIME object
◆ SetTargetClassesCol()
VectorLIME Synapse.ML.Explainers.VectorLIME.SetTargetClassesCol |
( |
string |
value | ) |
|
Sets value for targetClassesCol
- Parameters
-
value | The name of the column that specifies the indices of the classes for multinomial classification models. |
- Returns
- New VectorLIME object
◆ SetTargetCol()
VectorLIME Synapse.ML.Explainers.VectorLIME.SetTargetCol |
( |
string |
value | ) |
|
Sets value for targetCol
- Parameters
-
value | The column name of the prediction target to explain (i.e. the response variable). This is usually set to "prediction" for regression models and "probability" for probabilistic classification models. Default value: probability |
- Returns
- New VectorLIME object
The documentation for this class was generated from the following file:
- synapse/ml/explainers/VectorLIME.cs