Synapseml  0.10.0
Public Member Functions | Static Public Member Functions | List of all members
Synapse.ML.Featurize.Featurize Class Reference

Featurize implements Featurize More...

Inheritance diagram for Synapse.ML.Featurize.Featurize:
Inheritance graph
[legend]
Collaboration diagram for Synapse.ML.Featurize.Featurize:
Collaboration graph
[legend]

Public Member Functions

 Featurize ()
 Creates a Featurize without any parameters. More...
 
 Featurize (string uid)
 Creates a Featurize with a UID that is used to give the Featurize a unique ID. More...
 
Featurize SetImputeMissing (bool value)
 Sets value for imputeMissing More...
 
Featurize SetInputCols (string[] value)
 Sets value for inputCols More...
 
Featurize SetNumFeatures (int value)
 Sets value for numFeatures More...
 
Featurize SetOneHotEncodeCategoricals (bool value)
 Sets value for oneHotEncodeCategoricals More...
 
Featurize SetOutputCol (string value)
 Sets value for outputCol More...
 
bool GetImputeMissing ()
 Gets imputeMissing value More...
 
string [] GetInputCols ()
 Gets inputCols value More...
 
int GetNumFeatures ()
 Gets numFeatures value More...
 
bool GetOneHotEncodeCategoricals ()
 Gets oneHotEncodeCategoricals value More...
 
string GetOutputCol ()
 Gets outputCol value More...
 
override PipelineModel Fit (DataFrame dataset)
 Fits a model to the input data. More...
 
void Save (string path)
 Saves the object so that it can be loaded later using Load. Note that these objects can be shared with Scala by Loading or Saving in Scala. More...
 
JavaMLWriter Write ()
 
Returns
a JavaMLWriter instance for this ML instance.

 
JavaMLReader< FeaturizeRead ()
 Get the corresponding JavaMLReader instance. More...
 

Static Public Member Functions

static Featurize Load (string path)
 Loads the Featurize that was previously saved using Save(string). More...
 

Detailed Description

Featurize implements Featurize

Constructor & Destructor Documentation

◆ Featurize() [1/2]

Synapse.ML.Featurize.Featurize.Featurize ( )
inline

Creates a Featurize without any parameters.

◆ Featurize() [2/2]

Synapse.ML.Featurize.Featurize.Featurize ( string  uid)
inline

Creates a Featurize with a UID that is used to give the Featurize a unique ID.

Parameters
uidAn immutable unique ID for the object and its derivatives.

Member Function Documentation

◆ Fit()

override PipelineModel Synapse.ML.Featurize.Featurize.Fit ( DataFrame  dataset)

Fits a model to the input data.

Parameters
datasetThe DataFrame to fit the model to.
Returns
PipelineModel

◆ GetImputeMissing()

bool Synapse.ML.Featurize.Featurize.GetImputeMissing ( )

Gets imputeMissing value

Returns
imputeMissing: Whether to impute missing values

◆ GetInputCols()

string [] Synapse.ML.Featurize.Featurize.GetInputCols ( )

Gets inputCols value

Returns
inputCols: The names of the input columns

◆ GetNumFeatures()

int Synapse.ML.Featurize.Featurize.GetNumFeatures ( )

Gets numFeatures value

Returns
numFeatures: Number of features to hash string columns to

◆ GetOneHotEncodeCategoricals()

bool Synapse.ML.Featurize.Featurize.GetOneHotEncodeCategoricals ( )

Gets oneHotEncodeCategoricals value

Returns
oneHotEncodeCategoricals: One-hot encode categorical columns

◆ GetOutputCol()

string Synapse.ML.Featurize.Featurize.GetOutputCol ( )

Gets outputCol value

Returns
outputCol: The name of the output column

◆ Load()

static Featurize Synapse.ML.Featurize.Featurize.Load ( string  path)
static

Loads the Featurize that was previously saved using Save(string).

Parameters
pathThe path the previous Featurize was saved to
Returns
New Featurize object, loaded from path.

◆ Read()

JavaMLReader<Featurize> Synapse.ML.Featurize.Featurize.Read ( )

Get the corresponding JavaMLReader instance.

Returns
an JavaMLReader<Featurize> instance for this ML instance.

◆ Save()

void Synapse.ML.Featurize.Featurize.Save ( string  path)

Saves the object so that it can be loaded later using Load. Note that these objects can be shared with Scala by Loading or Saving in Scala.

Parameters
pathThe path to save the object to

◆ SetImputeMissing()

Featurize Synapse.ML.Featurize.Featurize.SetImputeMissing ( bool  value)

Sets value for imputeMissing

Parameters
valueWhether to impute missing values
Returns
New Featurize object

◆ SetInputCols()

Featurize Synapse.ML.Featurize.Featurize.SetInputCols ( string []  value)

Sets value for inputCols

Parameters
valueThe names of the input columns
Returns
New Featurize object

◆ SetNumFeatures()

Featurize Synapse.ML.Featurize.Featurize.SetNumFeatures ( int  value)

Sets value for numFeatures

Parameters
valueNumber of features to hash string columns to
Returns
New Featurize object

◆ SetOneHotEncodeCategoricals()

Featurize Synapse.ML.Featurize.Featurize.SetOneHotEncodeCategoricals ( bool  value)

Sets value for oneHotEncodeCategoricals

Parameters
valueOne-hot encode categorical columns
Returns
New Featurize object

◆ SetOutputCol()

Featurize Synapse.ML.Featurize.Featurize.SetOutputCol ( string  value)

Sets value for outputCol

Parameters
valueThe name of the output column
Returns
New Featurize object

The documentation for this class was generated from the following file: