Synapseml  0.10.0
Public Member Functions | Static Public Member Functions | List of all members
Synapse.ML.Vw.VowpalWabbitClassificationModel Class Reference

VowpalWabbitClassificationModel implements VowpalWabbitClassificationModel More...

Inheritance diagram for Synapse.ML.Vw.VowpalWabbitClassificationModel:
Inheritance graph
[legend]
Collaboration diagram for Synapse.ML.Vw.VowpalWabbitClassificationModel:
Collaboration graph
[legend]

Public Member Functions

 VowpalWabbitClassificationModel ()
 Creates a VowpalWabbitClassificationModel without any parameters. More...
 
 VowpalWabbitClassificationModel (string uid)
 Creates a VowpalWabbitClassificationModel with a UID that is used to give the VowpalWabbitClassificationModel a unique ID. More...
 
VowpalWabbitClassificationModel SetAdditionalFeatures (string[] value)
 Sets value for additionalFeatures More...
 
VowpalWabbitClassificationModel SetFeaturesCol (string value)
 Sets value for featuresCol More...
 
VowpalWabbitClassificationModel SetLabelCol (string value)
 Sets value for labelCol More...
 
VowpalWabbitClassificationModel SetModel (object value)
 Sets value for model More...
 
VowpalWabbitClassificationModel SetPerformanceStatistics (DataFrame value)
 Sets value for performanceStatistics More...
 
VowpalWabbitClassificationModel SetPredictionCol (string value)
 Sets value for predictionCol More...
 
VowpalWabbitClassificationModel SetProbabilityCol (string value)
 Sets value for probabilityCol More...
 
VowpalWabbitClassificationModel SetRawPredictionCol (string value)
 Sets value for rawPredictionCol More...
 
VowpalWabbitClassificationModel SetTestArgs (string value)
 Sets value for testArgs More...
 
VowpalWabbitClassificationModel SetThresholds (double[] value)
 Sets value for thresholds More...
 
string [] GetAdditionalFeatures ()
 Gets additionalFeatures value More...
 
string GetFeaturesCol ()
 Gets featuresCol value More...
 
string GetLabelCol ()
 Gets labelCol value More...
 
object GetModel ()
 Gets model value More...
 
DataFrame GetPerformanceStatistics ()
 Gets performanceStatistics value More...
 
string GetPredictionCol ()
 Gets predictionCol value More...
 
string GetProbabilityCol ()
 Gets probabilityCol value More...
 
string GetRawPredictionCol ()
 Gets rawPredictionCol value More...
 
string GetTestArgs ()
 Gets testArgs value More...
 
double [] GetThresholds ()
 Gets thresholds value More...
 
void Save (string path)
 Saves the object so that it can be loaded later using Load. Note that these objects can be shared with Scala by Loading or Saving in Scala. More...
 
JavaMLWriter Write ()
 
Returns
a JavaMLWriter instance for this ML instance.

 
JavaMLReader< VowpalWabbitClassificationModelRead ()
 Get the corresponding JavaMLReader instance. More...
 

Static Public Member Functions

static VowpalWabbitClassificationModel Load (string path)
 Loads the VowpalWabbitClassificationModel that was previously saved using Save(string). More...
 

Detailed Description

VowpalWabbitClassificationModel implements VowpalWabbitClassificationModel

Constructor & Destructor Documentation

◆ VowpalWabbitClassificationModel() [1/2]

Synapse.ML.Vw.VowpalWabbitClassificationModel.VowpalWabbitClassificationModel ( )
inline

Creates a VowpalWabbitClassificationModel without any parameters.

◆ VowpalWabbitClassificationModel() [2/2]

Synapse.ML.Vw.VowpalWabbitClassificationModel.VowpalWabbitClassificationModel ( string  uid)
inline

Creates a VowpalWabbitClassificationModel with a UID that is used to give the VowpalWabbitClassificationModel a unique ID.

Parameters
uidAn immutable unique ID for the object and its derivatives.

Member Function Documentation

◆ GetAdditionalFeatures()

string [] Synapse.ML.Vw.VowpalWabbitClassificationModel.GetAdditionalFeatures ( )

Gets additionalFeatures value

Returns
additionalFeatures: Additional feature columns

◆ GetFeaturesCol()

string Synapse.ML.Vw.VowpalWabbitClassificationModel.GetFeaturesCol ( )

Gets featuresCol value

Returns
featuresCol: features column name

◆ GetLabelCol()

string Synapse.ML.Vw.VowpalWabbitClassificationModel.GetLabelCol ( )

Gets labelCol value

Returns
labelCol: label column name

◆ GetModel()

object Synapse.ML.Vw.VowpalWabbitClassificationModel.GetModel ( )

Gets model value

Returns
model: The VW model....

◆ GetPerformanceStatistics()

DataFrame Synapse.ML.Vw.VowpalWabbitClassificationModel.GetPerformanceStatistics ( )

Gets performanceStatistics value

Returns
performanceStatistics: Performance statistics collected during training

◆ GetPredictionCol()

string Synapse.ML.Vw.VowpalWabbitClassificationModel.GetPredictionCol ( )

Gets predictionCol value

Returns
predictionCol: prediction column name

◆ GetProbabilityCol()

string Synapse.ML.Vw.VowpalWabbitClassificationModel.GetProbabilityCol ( )

Gets probabilityCol value

Returns
probabilityCol: Column name for predicted class conditional probabilities. Note: Not all models output well-calibrated probability estimates! These probabilities should be treated as confidences, not precise probabilities

◆ GetRawPredictionCol()

string Synapse.ML.Vw.VowpalWabbitClassificationModel.GetRawPredictionCol ( )

Gets rawPredictionCol value

Returns
rawPredictionCol: raw prediction (a.k.a. confidence) column name

◆ GetTestArgs()

string Synapse.ML.Vw.VowpalWabbitClassificationModel.GetTestArgs ( )

Gets testArgs value

Returns
testArgs: Additional arguments passed to VW at test time

◆ GetThresholds()

double [] Synapse.ML.Vw.VowpalWabbitClassificationModel.GetThresholds ( )

Gets thresholds value

Returns
thresholds: Thresholds in multi-class classification to adjust the probability of predicting each class. Array must have length equal to the number of classes, with values > 0 excepting that at most one value may be 0. The class with largest value p/t is predicted, where p is the original probability of that class and t is the class's threshold

◆ Load()

static VowpalWabbitClassificationModel Synapse.ML.Vw.VowpalWabbitClassificationModel.Load ( string  path)
static

Loads the VowpalWabbitClassificationModel that was previously saved using Save(string).

Parameters
pathThe path the previous VowpalWabbitClassificationModel was saved to
Returns
New VowpalWabbitClassificationModel object, loaded from path.

◆ Read()

JavaMLReader<VowpalWabbitClassificationModel> Synapse.ML.Vw.VowpalWabbitClassificationModel.Read ( )

Get the corresponding JavaMLReader instance.

Returns
an JavaMLReader<VowpalWabbitClassificationModel> instance for this ML instance.

◆ Save()

void Synapse.ML.Vw.VowpalWabbitClassificationModel.Save ( string  path)

Saves the object so that it can be loaded later using Load. Note that these objects can be shared with Scala by Loading or Saving in Scala.

Parameters
pathThe path to save the object to

◆ SetAdditionalFeatures()

VowpalWabbitClassificationModel Synapse.ML.Vw.VowpalWabbitClassificationModel.SetAdditionalFeatures ( string []  value)

Sets value for additionalFeatures

Parameters
valueAdditional feature columns
Returns
New VowpalWabbitClassificationModel object

◆ SetFeaturesCol()

VowpalWabbitClassificationModel Synapse.ML.Vw.VowpalWabbitClassificationModel.SetFeaturesCol ( string  value)

Sets value for featuresCol

Parameters
valuefeatures column name
Returns
New VowpalWabbitClassificationModel object

◆ SetLabelCol()

VowpalWabbitClassificationModel Synapse.ML.Vw.VowpalWabbitClassificationModel.SetLabelCol ( string  value)

Sets value for labelCol

Parameters
valuelabel column name
Returns
New VowpalWabbitClassificationModel object

◆ SetModel()

VowpalWabbitClassificationModel Synapse.ML.Vw.VowpalWabbitClassificationModel.SetModel ( object  value)

Sets value for model

Parameters
valueThe VW model....
Returns
New VowpalWabbitClassificationModel object

◆ SetPerformanceStatistics()

VowpalWabbitClassificationModel Synapse.ML.Vw.VowpalWabbitClassificationModel.SetPerformanceStatistics ( DataFrame  value)

Sets value for performanceStatistics

Parameters
valuePerformance statistics collected during training
Returns
New VowpalWabbitClassificationModel object

◆ SetPredictionCol()

VowpalWabbitClassificationModel Synapse.ML.Vw.VowpalWabbitClassificationModel.SetPredictionCol ( string  value)

Sets value for predictionCol

Parameters
valueprediction column name
Returns
New VowpalWabbitClassificationModel object

◆ SetProbabilityCol()

VowpalWabbitClassificationModel Synapse.ML.Vw.VowpalWabbitClassificationModel.SetProbabilityCol ( string  value)

Sets value for probabilityCol

Parameters
valueColumn name for predicted class conditional probabilities. Note: Not all models output well-calibrated probability estimates! These probabilities should be treated as confidences, not precise probabilities
Returns
New VowpalWabbitClassificationModel object

◆ SetRawPredictionCol()

VowpalWabbitClassificationModel Synapse.ML.Vw.VowpalWabbitClassificationModel.SetRawPredictionCol ( string  value)

Sets value for rawPredictionCol

Parameters
valueraw prediction (a.k.a. confidence) column name
Returns
New VowpalWabbitClassificationModel object

◆ SetTestArgs()

VowpalWabbitClassificationModel Synapse.ML.Vw.VowpalWabbitClassificationModel.SetTestArgs ( string  value)

Sets value for testArgs

Parameters
valueAdditional arguments passed to VW at test time
Returns
New VowpalWabbitClassificationModel object

◆ SetThresholds()

VowpalWabbitClassificationModel Synapse.ML.Vw.VowpalWabbitClassificationModel.SetThresholds ( double []  value)

Sets value for thresholds

Parameters
valueThresholds in multi-class classification to adjust the probability of predicting each class. Array must have length equal to the number of classes, with values > 0 excepting that at most one value may be 0. The class with largest value p/t is predicted, where p is the original probability of that class and t is the class's threshold
Returns
New VowpalWabbitClassificationModel object

The documentation for this class was generated from the following file: