Packages

class IndexToValue extends Transformer with HasInputCol with HasOutputCol with Wrappable with DefaultParamsWritable with BasicLogging

This class takes in a categorical column with MML style attributes and then transforms it back to the original values. This extends sparkML IndexToString by allowing the transformation back to any types of values.

Linear Supertypes
BasicLogging, DefaultParamsWritable, MLWritable, Wrappable, DotnetWrappable, RWrappable, PythonWrappable, BaseWrappable, HasOutputCol, HasInputCol, Transformer, PipelineStage, Logging, Params, Serializable, Serializable, Identifiable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. IndexToValue
  2. BasicLogging
  3. DefaultParamsWritable
  4. MLWritable
  5. Wrappable
  6. DotnetWrappable
  7. RWrappable
  8. PythonWrappable
  9. BaseWrappable
  10. HasOutputCol
  11. HasInputCol
  12. Transformer
  13. PipelineStage
  14. Logging
  15. Params
  16. Serializable
  17. Serializable
  18. Identifiable
  19. AnyRef
  20. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new IndexToValue()
  2. new IndexToValue(uid: String)

Value Members

  1. final def clear(param: Param[_]): IndexToValue.this.type
    Definition Classes
    Params
  2. def copy(extra: ParamMap): IndexToValue.this.type
    Definition Classes
    IndexToValue → Transformer → PipelineStage → Params
  3. def dotnetAdditionalMethods: String
    Definition Classes
    DotnetWrappable
  4. def explainParam(param: Param[_]): String
    Definition Classes
    Params
  5. def explainParams(): String
    Definition Classes
    Params
  6. final def extractParamMap(): ParamMap
    Definition Classes
    Params
  7. final def extractParamMap(extra: ParamMap): ParamMap
    Definition Classes
    Params
  8. final def get[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  9. final def getDefault[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  10. def getInputCol: String

    Definition Classes
    HasInputCol
  11. def getLevelUDF[T](dataset: Dataset[_])(implicit arg0: scala.reflect.api.JavaUniverse.TypeTag[T], ct: ClassTag[T]): UserDefinedFunction
  12. final def getOrDefault[T](param: Param[T]): T
    Definition Classes
    Params
  13. def getOutputCol: String

    Definition Classes
    HasOutputCol
  14. def getParam(paramName: String): Param[Any]
    Definition Classes
    Params
  15. def getParamInfo(p: Param[_]): ParamInfo[_]
    Definition Classes
    BaseWrappable
  16. final def hasDefault[T](param: Param[T]): Boolean
    Definition Classes
    Params
  17. def hasParam(paramName: String): Boolean
    Definition Classes
    Params
  18. val inputCol: Param[String]

    The name of the input column

    The name of the input column

    Definition Classes
    HasInputCol
  19. final def isDefined(param: Param[_]): Boolean
    Definition Classes
    Params
  20. final def isSet(param: Param[_]): Boolean
    Definition Classes
    Params
  21. def logClass(): Unit
    Definition Classes
    BasicLogging
  22. def logFit[T](f: ⇒ T): T
    Definition Classes
    BasicLogging
  23. def logPredict[T](f: ⇒ T): T
    Definition Classes
    BasicLogging
  24. def logTrain[T](f: ⇒ T): T
    Definition Classes
    BasicLogging
  25. def logTransform[T](f: ⇒ T): T
    Definition Classes
    BasicLogging
  26. def logVerb[T](verb: String, f: ⇒ T): T
    Definition Classes
    BasicLogging
  27. def makeDotnetFile(conf: CodegenConfig): Unit
    Definition Classes
    DotnetWrappable
  28. def makePyFile(conf: CodegenConfig): Unit
    Definition Classes
    PythonWrappable
  29. def makeRFile(conf: CodegenConfig): Unit
    Definition Classes
    RWrappable
  30. val outputCol: Param[String]

    The name of the output column

    The name of the output column

    Definition Classes
    HasOutputCol
  31. lazy val params: Array[Param[_]]
    Definition Classes
    Params
  32. def pyAdditionalMethods: String
    Definition Classes
    PythonWrappable
  33. def pyInitFunc(): String
    Definition Classes
    PythonWrappable
  34. def save(path: String): Unit
    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  35. final def set[T](param: Param[T], value: T): IndexToValue.this.type
    Definition Classes
    Params
  36. def setInputCol(value: String): IndexToValue.this.type

    Definition Classes
    HasInputCol
  37. def setOutputCol(value: String): IndexToValue.this.type

    Definition Classes
    HasOutputCol
  38. def toString(): String
    Definition Classes
    Identifiable → AnyRef → Any
  39. def transform(dataset: Dataset[_]): DataFrame

    dataset

    - The input dataset, to be transformed

    returns

    The DataFrame that results from column selection

    Definition Classes
    IndexToValue → Transformer
  40. def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" )
  41. def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" ) @varargs()
  42. def transformSchema(schema: StructType): StructType
    Definition Classes
    IndexToValue → PipelineStage
  43. val uid: String
    Definition Classes
    IndexToValueBasicLogging → Identifiable
  44. val ver: String
    Definition Classes
    BasicLogging
  45. def write: MLWriter
    Definition Classes
    DefaultParamsWritable → MLWritable