case class GeneralParams(parallelism: String, topK: Option[Int], numIterations: Int, learningRate: Double, numLeaves: Option[Int], maxBin: Option[Int], binSampleCount: Option[Int], baggingFraction: Option[Double], posBaggingFraction: Option[Double], negBaggingFraction: Option[Double], baggingFreq: Option[Int], baggingSeed: Option[Int], earlyStoppingRound: Int, improvementTolerance: Double, featureFraction: Option[Double], featureFractionByNode: Option[Double], maxDepth: Option[Int], minSumHessianInLeaf: Option[Double], numMachines: Int, modelString: Option[String], categoricalFeatures: Array[Int], verbosity: Int, boostingType: String, lambdaL1: Option[Double], lambdaL2: Option[Double], metric: Option[String], minGainToSplit: Option[Double], maxDeltaStep: Option[Double], maxBinByFeature: Array[Int], minDataPerBin: Option[Int], minDataInLeaf: Option[Int], topRate: Option[Double], otherRate: Option[Double], monotoneConstraints: Array[Int], monotoneConstraintsMethod: Option[String], monotonePenalty: Option[Double], featureNames: Array[String]) extends ParamGroup with Product with Serializable
Defines the general Booster parameters passed to the LightGBM library.
Linear Supertypes
Ordering
- Alphabetic
- By Inheritance
Inherited
- GeneralParams
- Product
- Equals
- ParamGroup
- Serializable
- Serializable
- AnyRef
- Any
- Hide All
- Show All
Visibility
- Public
- All
Instance Constructors
- new GeneralParams(parallelism: String, topK: Option[Int], numIterations: Int, learningRate: Double, numLeaves: Option[Int], maxBin: Option[Int], binSampleCount: Option[Int], baggingFraction: Option[Double], posBaggingFraction: Option[Double], negBaggingFraction: Option[Double], baggingFreq: Option[Int], baggingSeed: Option[Int], earlyStoppingRound: Int, improvementTolerance: Double, featureFraction: Option[Double], featureFractionByNode: Option[Double], maxDepth: Option[Int], minSumHessianInLeaf: Option[Double], numMachines: Int, modelString: Option[String], categoricalFeatures: Array[Int], verbosity: Int, boostingType: String, lambdaL1: Option[Double], lambdaL2: Option[Double], metric: Option[String], minGainToSplit: Option[Double], maxDeltaStep: Option[Double], maxBinByFeature: Array[Int], minDataPerBin: Option[Int], minDataInLeaf: Option[Int], topRate: Option[Double], otherRate: Option[Double], monotoneConstraints: Array[Int], monotoneConstraintsMethod: Option[String], monotonePenalty: Option[Double], featureNames: Array[String])
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
appendParams(sb: ParamsStringBuilder): ParamsStringBuilder
- Definition Classes
- GeneralParams → ParamGroup
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
- val baggingFraction: Option[Double]
- val baggingFreq: Option[Int]
- val baggingSeed: Option[Int]
- val binSampleCount: Option[Int]
- val boostingType: String
- val categoricalFeatures: Array[Int]
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
- val earlyStoppingRound: Int
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- val featureFraction: Option[Double]
- val featureFractionByNode: Option[Double]
- val featureNames: Array[String]
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
- val improvementTolerance: Double
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- val lambdaL1: Option[Double]
- val lambdaL2: Option[Double]
- val learningRate: Double
- val maxBin: Option[Int]
- val maxBinByFeature: Array[Int]
- val maxDeltaStep: Option[Double]
- val maxDepth: Option[Int]
- val metric: Option[String]
- val minDataInLeaf: Option[Int]
- val minDataPerBin: Option[Int]
- val minGainToSplit: Option[Double]
- val minSumHessianInLeaf: Option[Double]
- val modelString: Option[String]
- val monotoneConstraints: Array[Int]
- val monotoneConstraintsMethod: Option[String]
- val monotonePenalty: Option[Double]
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- val negBaggingFraction: Option[Double]
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
- val numIterations: Int
- val numLeaves: Option[Int]
- val numMachines: Int
- val otherRate: Option[Double]
- val parallelism: String
- val posBaggingFraction: Option[Double]
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- ParamGroup → AnyRef → Any
- val topK: Option[Int]
- val topRate: Option[Double]
- val verbosity: Int
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()