c

# RegressionBase 

#### abstract class RegressionBase extends AnyRef

The RegressionBase class centers and rescales the input matrix and output vector to support fitting intercept and specifying sampleWeights. The underlying regression algorithm does not need to support fitting intercept and sample weights.

Linear Supertypes
Known Subclasses
Ordering
1. Alphabetic
2. By Inheritance
Inherited
1. RegressionBase
2. AnyRef
3. Any
1. Hide All
2. Show All
Visibility
1. Public
2. All

### Instance Constructors

1. new RegressionBase()

### Abstract Value Members

1. abstract def normalizeSampleWeights(sampleWeights: DenseVector[Double]): DenseVector[Double]
Attributes
protected
2. abstract def regress(x: DenseMatrix[Double], y: DenseVector[Double]): DenseVector[Double]
Attributes
protected

### Concrete Value Members

1. final def !=(arg0: Any)
Definition Classes
AnyRef → Any
2. final def ##(): Int
Definition Classes
AnyRef → Any
3. final def ==(arg0: Any)
Definition Classes
AnyRef → Any
4. final def asInstanceOf[T0]: T0
Definition Classes
Any
5. def clone()
Attributes
protected[lang]
Definition Classes
AnyRef
Annotations
@throws( ... ) @native()
6. def computeLoss(coefficients: DenseVector[Double], intercept: Double)(x: DenseMatrix[Double], y: DenseVector[Double], sampleWeights: DenseVector[Double])
Attributes
protected
7. final def eq(arg0: AnyRef)
Definition Classes
AnyRef
8. def equals(arg0: Any)
Definition Classes
AnyRef → Any
9. def finalize(): Unit
Attributes
protected[lang]
Definition Classes
AnyRef
Annotations
@throws( classOf[java.lang.Throwable] )
10. def fit(data: Matrix[Double], outputs: Vector[Double], sampleWeights: Vector[Double], fitIntercept: Boolean)
11. def fit(data: Matrix[Double], outputs: Vector[Double], fitIntercept: Boolean)
12. final def getClass(): Class[_]
Definition Classes
AnyRef → Any
Annotations
@native()
13. def hashCode(): Int
Definition Classes
AnyRef → Any
Annotations
@native()
14. final def isInstanceOf[T0]
Definition Classes
Any
15. final def ne(arg0: AnyRef)
Definition Classes
AnyRef
16. final def notify(): Unit
Definition Classes
AnyRef
Annotations
@native()
17. final def notifyAll(): Unit
Definition Classes
AnyRef
Annotations
@native()
18. implicit lazy val sumImpl: breeze.linalg.sum.Impl[BroadcastedColumns[DenseMatrix[Double], DenseVector[Double]], Transpose[DenseVector[Double]]]

Provides an implementation for sum operation of BroadcastedColumns in breeze.

Provides an implementation for sum operation of BroadcastedColumns in breeze. Spark 3.0.* and 3.1.* depends on breeze 1.0 and Spark 3.2.* depends on breeze 1.2, and there is a breaking change in the way the implicit sum implementation is provided. In breeze 1.0, the implementation is constructed via `sum.vectorizeCols_Double(ClassTag[Double], Zero.DoubleZero, sum.helper_Double)`, while in breeze 1.2, it's constructed via `sum.vectorizeCols_Double(sum.helper_Double)` If our code is compiled against Spark 3.2.0/breeze 1.0, the scala compiler implicitly constructs the implementation via `sum.vectorizeCols_Double(ClassTag[Double], Zero.DoubleZero, sum.helper_Double)`, which does not exist in breeze 1.2, thus causing `java.lang.NoSuchMethodError` when running on Spark 3.2.0. Conversely, if our code is compiled against Spark 3.2.0/breeze 1.2, it will cause `java.lang.NoSuchMethodError` when running on Spark 3.0.* and 3.1.*. Workaround: use reflection to construct the implementation.

19. final def synchronized[T0](arg0: ⇒ T0): T0
Definition Classes
AnyRef
20. def toString(): String
Definition Classes
AnyRef → Any
21. final def wait(): Unit
Definition Classes
AnyRef
Annotations
@throws( ... )
22. final def wait(arg0: Long, arg1: Int): Unit
Definition Classes
AnyRef
Annotations
@throws( ... )
23. final def wait(arg0: Long): Unit
Definition Classes
AnyRef
Annotations
@throws( ... ) @native()