class LightGBMRanker extends Ranker[Vector, LightGBMRanker, LightGBMRankerModel] with LightGBMBase[LightGBMRankerModel] with SynapseMLLogging
Trains a LightGBMRanker model, a fast, distributed, high performance gradient boosting framework based on decision tree algorithms. For more information please see here: https://github.com/Microsoft/LightGBM. For parameter information see here: https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst
- Alphabetic
- By Inheritance
- LightGBMRanker
- LightGBMBase
- SynapseMLLogging
- LightGBMPerformance
- LightGBMParams
- LightGBMCategoricalParams
- LightGBMSeedParams
- LightGBMObjectiveParams
- LightGBMPredictionParams
- LightGBMDartParams
- LightGBMDatasetParams
- LightGBMLearnerParams
- LightGBMBinParams
- LightGBMFractionParams
- LightGBMSlotParams
- LightGBMExecutionParams
- HasInitScoreCol
- HasValidationIndicatorCol
- HasWeightCol
- DefaultParamsWritable
- MLWritable
- Wrappable
- DotnetWrappable
- RWrappable
- PythonWrappable
- BaseWrappable
- Ranker
- HasGroupCol
- Predictor
- PredictorParams
- HasPredictionCol
- HasFeaturesCol
- HasLabelCol
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
$[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
addCustomTrainParams(params: BaseTrainParams, dataset: Dataset[_]): BaseTrainParams
- Attributes
- protected
- Definition Classes
- LightGBMBase
-
def
afterTrainBatch(batchIndex: Int, dataset: Dataset[_], model: LightGBMRankerModel): Unit
- Definition Classes
- LightGBMBase
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
val
baggingFraction: DoubleParam
- Definition Classes
- LightGBMFractionParams
-
val
baggingFreq: IntParam
- Definition Classes
- LightGBMParams
-
val
baggingSeed: IntParam
- Definition Classes
- LightGBMSeedParams
-
def
beforeTrainBatch(batchIndex: Int, dataset: Dataset[_], model: Option[LightGBMRankerModel]): Unit
- Definition Classes
- LightGBMBase
-
val
binSampleCount: IntParam
- Definition Classes
- LightGBMBinParams
-
val
boostFromAverage: BooleanParam
- Definition Classes
- LightGBMParams
-
val
boostingType: Param[String]
- Definition Classes
- LightGBMParams
-
def
calculateColumnStatistics(dataframe: DataFrame, measures: InstrumentationMeasures): (Int, Int)
Extract column counts from the dataset.
Extract column counts from the dataset.
- dataframe
The dataset to train on.
- returns
The number of feature columns and initial score classes
- Attributes
- protected
- Definition Classes
- LightGBMBase
-
def
calculateRowStatistics(dataframe: DataFrame, trainingParams: BaseTrainParams, numCols: Int, measures: InstrumentationMeasures): (Array[Row], Array[Long])
Inner train method for LightGBM learners.
Inner train method for LightGBM learners. Calculates the number of workers, creates a driver thread, and runs mapPartitions on the dataset.
- dataframe
The dataset to train on.
- trainingParams
The training parameters.
- numCols
The number of feature columns.
- returns
The serialized Dataset reference and an array of partition counts.
- Attributes
- protected
- Definition Classes
- LightGBMBase
-
def
castColumns(dataset: Dataset[_], trainingCols: Array[(String, Seq[DataType])]): DataFrame
- Attributes
- protected
- Definition Classes
- LightGBMBase
-
val
catSmooth: DoubleParam
- Definition Classes
- LightGBMCategoricalParams
-
val
categoricalSlotIndexes: IntArrayParam
- Definition Classes
- LightGBMSlotParams
-
val
categoricalSlotNames: StringArrayParam
- Definition Classes
- LightGBMSlotParams
-
val
catl2: DoubleParam
- Definition Classes
- LightGBMCategoricalParams
-
val
chunkSize: IntParam
- Definition Classes
- LightGBMExecutionParams
-
lazy val
classNameHelper: String
- Attributes
- protected
- Definition Classes
- BaseWrappable
-
final
def
clear(param: Param[_]): LightGBMRanker.this.type
- Definition Classes
- Params
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
companionModelClassName: String
- Attributes
- protected
- Definition Classes
- BaseWrappable
-
def
copy(extra: ParamMap): LightGBMRanker
- Definition Classes
- LightGBMRanker → Predictor → Estimator → PipelineStage → Params
-
def
copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
lazy val
copyrightLines: String
- Attributes
- protected
- Definition Classes
- BaseWrappable
-
val
dataRandomSeed: IntParam
- Definition Classes
- LightGBMSeedParams
-
final
def
defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
val
defaultListenPort: IntParam
- Definition Classes
- LightGBMExecutionParams
-
val
delegate: Option[LightGBMDelegate]
- Definition Classes
- LightGBMParams
-
val
deterministic: BooleanParam
- Definition Classes
- LightGBMSeedParams
-
def
dotnetAdditionalMethods: String
- Definition Classes
- DotnetWrappable
-
def
dotnetClass(): String
- Attributes
- protected
- Definition Classes
- DotnetWrappable
-
lazy val
dotnetClassName: String
- Attributes
- protected
- Definition Classes
- DotnetWrappable
-
lazy val
dotnetClassNameString: String
- Attributes
- protected
- Definition Classes
- DotnetWrappable
-
lazy val
dotnetClassWrapperName: String
- Attributes
- protected
- Definition Classes
- DotnetWrappable
-
lazy val
dotnetCopyrightLines: String
- Attributes
- protected
- Definition Classes
- DotnetWrappable
-
def
dotnetExtraEstimatorImports: String
- Attributes
- protected
- Definition Classes
- DotnetWrappable
-
def
dotnetExtraMethods: String
- Attributes
- protected
- Definition Classes
- DotnetWrappable
-
lazy val
dotnetInternalWrapper: Boolean
- Attributes
- protected
- Definition Classes
- DotnetWrappable
-
def
dotnetMLReadWriteMethods: String
- Attributes
- protected
- Definition Classes
- DotnetWrappable
-
lazy val
dotnetNamespace: String
- Attributes
- protected
- Definition Classes
- DotnetWrappable
-
lazy val
dotnetObjectBaseClass: String
- Attributes
- protected
- Definition Classes
- DotnetWrappable
-
def
dotnetParamGetter(p: Param[_]): String
- Attributes
- protected
- Definition Classes
- DotnetWrappable
-
def
dotnetParamGetters: String
- Attributes
- protected
- Definition Classes
- DotnetWrappable
-
def
dotnetParamSetter(p: Param[_]): String
- Attributes
- protected
- Definition Classes
- DotnetWrappable
-
def
dotnetParamSetters: String
- Attributes
- protected
- Definition Classes
- DotnetWrappable
-
def
dotnetWrapAsTypeMethod: String
- Attributes
- protected
- Definition Classes
- DotnetWrappable
-
val
driverListenPort: IntParam
- Definition Classes
- LightGBMExecutionParams
-
val
dropRate: DoubleParam
- Definition Classes
- LightGBMDartParams
-
val
dropSeed: IntParam
- Definition Classes
- LightGBMSeedParams
-
val
earlyStoppingRound: IntParam
- Definition Classes
- LightGBMLearnerParams
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- val evalAt: IntArrayParam
-
def
executePartitionTasks(ctx: TrainingContext, dataframe: DataFrame, measures: InstrumentationMeasures): LightGBMBooster
- Attributes
- protected
- Definition Classes
- LightGBMBase
-
def
executeTraining(dataframe: DataFrame, validationData: Option[Broadcast[Array[Row]]], broadcastedSampleData: Option[Broadcast[Array[Row]]], partitionCounts: Option[Array[Long]], trainParams: BaseTrainParams, numCols: Int, numInitValueClasses: Int, batchIndex: Int, numTasks: Int, numTasksPerExecutor: Int, measures: InstrumentationMeasures): LightGBMRankerModel
Run a parallel job via map partitions to initialize the native library and network, translate the data to the LightGBM in-memory representation and train the models.
Run a parallel job via map partitions to initialize the native library and network, translate the data to the LightGBM in-memory representation and train the models.
- dataframe
The dataset to train on.
- validationData
The dataset to use as validation. (optional)
- broadcastedSampleData
Sample data to use for streaming mode Dataset creation (optional).
- partitionCounts
The count per partition for streaming mode (optional).
- trainParams
Training parameters.
- numCols
Number of columns.
- numInitValueClasses
Number of classes for initial values (used only for multiclass).
- batchIndex
In running in batch training mode, gets the batch number.
- numTasks
Number of tasks/partitions.
- numTasksPerExecutor
Number of tasks per executor.
- measures
Instrumentation measures to populate.
- returns
The LightGBM Model from the trained LightGBM Booster.
- Attributes
- protected
- Definition Classes
- LightGBMBase
-
val
executionMode: Param[String]
- Definition Classes
- LightGBMExecutionParams
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
val
extraSeed: IntParam
- Definition Classes
- LightGBMSeedParams
-
def
extractInstances(dataset: Dataset[_], validateInstance: (Instance) ⇒ Unit): RDD[Instance]
- Attributes
- protected
- Definition Classes
- PredictorParams
-
def
extractInstances(dataset: Dataset[_]): RDD[Instance]
- Attributes
- protected
- Definition Classes
- PredictorParams
-
def
extractLabeledPoints(dataset: Dataset[_]): RDD[LabeledPoint]
- Attributes
- protected
- Definition Classes
- Predictor
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
val
featureFraction: DoubleParam
- Definition Classes
- LightGBMFractionParams
-
val
featureFractionByNode: DoubleParam
- Definition Classes
- LightGBMFractionParams
-
val
featureFractionSeed: IntParam
- Definition Classes
- LightGBMSeedParams
-
final
val
featuresCol: Param[String]
- Definition Classes
- HasFeaturesCol
-
val
featuresShapCol: Param[String]
- Definition Classes
- LightGBMPredictionParams
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
def
fit(dataset: Dataset[_]): LightGBMRankerModel
- Definition Classes
- Predictor → Estimator
-
def
fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[LightGBMRankerModel]
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], paramMap: ParamMap): LightGBMRankerModel
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): LightGBMRankerModel
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" ) @varargs()
-
val
fobj: FObjParam
- Definition Classes
- LightGBMObjectiveParams
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getAllPerformanceMeasures: Option[Array[InstrumentationMeasures]]
- Definition Classes
- LightGBMPerformance
-
def
getBaggingFraction: Double
- Definition Classes
- LightGBMFractionParams
-
def
getBaggingFreq: Int
- Definition Classes
- LightGBMParams
-
def
getBaggingSeed: Int
- Definition Classes
- LightGBMSeedParams
-
def
getBinSampleCount: Int
- Definition Classes
- LightGBMBinParams
-
def
getBoostFromAverage: Boolean
- Definition Classes
- LightGBMParams
-
def
getBoostingType: String
- Definition Classes
- LightGBMParams
-
def
getCatSmooth: Double
- Definition Classes
- LightGBMCategoricalParams
-
def
getCategoricalIndexes(featuresSchema: StructField): Array[Int]
Retrieves the categorical indexes in the features column.
Retrieves the categorical indexes in the features column.
- featuresSchema
The schema of the features column
- returns
the categorical indexes in the features column.
- Attributes
- protected
- Definition Classes
- LightGBMBase
-
def
getCategoricalParams: CategoricalParams
Constructs the CategoricalParams.
Constructs the CategoricalParams.
- returns
CategoricalParams object containing the parameters related to LightGBM categorical features.
- Attributes
- protected
- Definition Classes
- LightGBMBase
-
def
getCategoricalSlotIndexes: Array[Int]
- Definition Classes
- LightGBMSlotParams
-
def
getCategoricalSlotNames: Array[String]
- Definition Classes
- LightGBMSlotParams
-
def
getCatl2: Double
- Definition Classes
- LightGBMCategoricalParams
-
def
getChunkSize: Int
- Definition Classes
- LightGBMExecutionParams
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
getColumnParams: ColumnParams
Constructs the ColumnParams.
Constructs the ColumnParams.
- returns
ColumnParams object containing the parameters related to LightGBM columns.
- Attributes
- protected
- Definition Classes
- LightGBMBase
-
def
getDartParams: DartModeParams
Constructs the DartModeParams
Constructs the DartModeParams
- returns
DartModeParams object containing parameters related to dart mode.
- Attributes
- protected
- Definition Classes
- LightGBMBase
-
def
getDataRandomSeed: Int
- Definition Classes
- LightGBMSeedParams
-
def
getDatasetCreationParams(categoricalIndexes: Array[Int], numThreads: Int): String
- Definition Classes
- LightGBMBase
-
def
getDatasetParams: DatasetParams
Constructs the DatasetParams.
Constructs the DatasetParams.
- returns
DatasetParams object containing parameters related to LightGBM Dataset parameters.
- Attributes
- protected
- Definition Classes
- LightGBMBase
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getDefaultListenPort: Int
- Definition Classes
- LightGBMExecutionParams
-
def
getDelegate: Option[LightGBMDelegate]
- Definition Classes
- LightGBMParams
-
def
getDeterministic: Boolean
- Definition Classes
- LightGBMSeedParams
-
def
getDriverListenPort: Int
- Definition Classes
- LightGBMExecutionParams
-
def
getDropRate: Double
- Definition Classes
- LightGBMDartParams
-
def
getDropSeed: Int
- Definition Classes
- LightGBMSeedParams
-
def
getEarlyStoppingRound: Int
- Definition Classes
- LightGBMLearnerParams
- def getEvalAt: Array[Int]
-
def
getExecutionMode: String
- Definition Classes
- LightGBMExecutionParams
-
def
getExecutionParams(numTasksPerExec: Int): ExecutionParams
Constructs the ExecutionParams.
Constructs the ExecutionParams.
- returns
ExecutionParams object containing parameters related to LightGBM execution.
- Attributes
- protected
- Definition Classes
- LightGBMBase
-
def
getExtraSeed: Int
- Definition Classes
- LightGBMSeedParams
-
def
getFObj: FObjTrait
- Definition Classes
- LightGBMObjectiveParams
-
def
getFeatureFraction: Double
- Definition Classes
- LightGBMFractionParams
-
def
getFeatureFractionByNode: Double
- Definition Classes
- LightGBMFractionParams
-
def
getFeatureFractionSeed: Int
- Definition Classes
- LightGBMSeedParams
-
final
def
getFeaturesCol: String
- Definition Classes
- HasFeaturesCol
-
def
getFeaturesShapCol: String
- Definition Classes
- LightGBMPredictionParams
-
def
getGeneralParams(numTasks: Int, featuresSchema: StructField): GeneralParams
Constructs the GeneralParams.
Constructs the GeneralParams.
- returns
GeneralParams object containing parameters related to general LightGBM parameters.
- Attributes
- protected
- Definition Classes
- LightGBMBase
-
def
getGroupCol: String
- Definition Classes
- HasGroupCol
-
def
getImprovementTolerance: Double
- Definition Classes
- LightGBMLearnerParams
-
def
getInitScoreCol: String
- Definition Classes
- HasInitScoreCol
-
def
getIsEnableSparse: Boolean
- Definition Classes
- LightGBMDatasetParams
-
def
getIsProvideTrainingMetric: Boolean
- Definition Classes
- LightGBMParams
-
final
def
getLabelCol: String
- Definition Classes
- HasLabelCol
- def getLabelGain: Array[Double]
-
def
getLambdaL1: Double
- Definition Classes
- LightGBMParams
-
def
getLambdaL2: Double
- Definition Classes
- LightGBMParams
-
def
getLeafPredictionCol: String
- Definition Classes
- LightGBMPredictionParams
-
def
getLearningRate: Double
- Definition Classes
- LightGBMParams
-
def
getMatrixType: String
- Definition Classes
- LightGBMExecutionParams
-
def
getMaxBin: Int
- Definition Classes
- LightGBMBinParams
-
def
getMaxBinByFeature: Array[Int]
- Definition Classes
- LightGBMParams
-
def
getMaxCatThreshold: Int
- Definition Classes
- LightGBMCategoricalParams
-
def
getMaxCatToOnehot: Int
- Definition Classes
- LightGBMCategoricalParams
-
def
getMaxDeltaStep: Double
- Definition Classes
- LightGBMParams
-
def
getMaxDepth: Int
- Definition Classes
- LightGBMParams
-
def
getMaxDrop: Int
- Definition Classes
- LightGBMDartParams
-
def
getMaxNumClasses: Int
- Definition Classes
- LightGBMParams
- def getMaxPosition: Int
-
def
getMaxStreamingOMPThreads: Int
- Definition Classes
- LightGBMExecutionParams
-
def
getMetric: String
- Definition Classes
- LightGBMParams
-
def
getMicroBatchSize: Int
- Definition Classes
- LightGBMExecutionParams
-
def
getMinDataInLeaf: Int
- Definition Classes
- LightGBMParams
-
def
getMinDataPerBin: Int
- Definition Classes
- LightGBMParams
-
def
getMinDataPerGroup: Int
- Definition Classes
- LightGBMCategoricalParams
-
def
getMinGainToSplit: Double
- Definition Classes
- LightGBMParams
-
def
getMinSumHessianInLeaf: Double
- Definition Classes
- LightGBMParams
-
def
getModel(trainParams: BaseTrainParams, lightGBMBooster: LightGBMBooster): LightGBMRankerModel
Gets the trained model given the train parameters and booster.
Gets the trained model given the train parameters and booster.
- returns
trained model.
- Definition Classes
- LightGBMRanker → LightGBMBase
-
def
getModelString: String
- Definition Classes
- LightGBMParams
-
def
getMonotoneConstraints: Array[Int]
- Definition Classes
- LightGBMLearnerParams
-
def
getMonotoneConstraintsMethod: String
- Definition Classes
- LightGBMLearnerParams
-
def
getMonotonePenalty: Double
- Definition Classes
- LightGBMLearnerParams
-
def
getNegBaggingFraction: Double
- Definition Classes
- LightGBMFractionParams
-
def
getNumBatches: Int
- Definition Classes
- LightGBMExecutionParams
-
def
getNumIterations: Int
- Definition Classes
- LightGBMParams
-
def
getNumLeaves: Int
- Definition Classes
- LightGBMParams
-
def
getNumTasks: Int
- Definition Classes
- LightGBMExecutionParams
-
def
getNumThreads: Int
- Definition Classes
- LightGBMExecutionParams
-
def
getObjective: String
- Definition Classes
- LightGBMObjectiveParams
-
def
getObjectiveParams: ObjectiveParams
Constructs the ObjectiveParams.
Constructs the ObjectiveParams.
- returns
ObjectiveParams object containing parameters related to the objective function.
- Attributes
- protected
- Definition Classes
- LightGBMBase
-
def
getObjectiveSeed: Int
- Definition Classes
- LightGBMSeedParams
-
def
getOptGroupCol: Option[String]
Optional group column for Ranking, set to None by default.
Optional group column for Ranking, set to None by default.
- returns
None
- Definition Classes
- LightGBMRanker → LightGBMBase
-
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
def
getOtherRate: Double
- Definition Classes
- LightGBMLearnerParams
-
def
getParallelism: String
- Definition Classes
- LightGBMExecutionParams
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
-
def
getParamInfo(p: Param[_]): ParamInfo[_]
- Definition Classes
- BaseWrappable
-
def
getPassThroughArgs: String
- Definition Classes
- LightGBMExecutionParams
-
def
getPerformanceMeasures: Option[InstrumentationMeasures]
In the common case of 1 batch, there is only 1 measure, so this is a convenience method.
In the common case of 1 batch, there is only 1 measure, so this is a convenience method.
- Definition Classes
- LightGBMPerformance
-
def
getPosBaggingFraction: Double
- Definition Classes
- LightGBMFractionParams
-
def
getPredictDisableShapeCheck: Boolean
- Definition Classes
- LightGBMPredictionParams
-
final
def
getPredictionCol: String
- Definition Classes
- HasPredictionCol
-
def
getRepartitionByGroupingColumn: Boolean
- Definition Classes
- LightGBMExecutionParams
-
def
getSeed: Int
- Definition Classes
- LightGBMSeedParams
-
def
getSeedParams: SeedParams
Constructs the SeedParams.
Constructs the SeedParams.
- returns
SeedParams object containing the parameters related to LightGBM seeds and determinism.
- Attributes
- protected
- Definition Classes
- LightGBMBase
-
def
getSkipDrop: Double
- Definition Classes
- LightGBMDartParams
-
def
getSlotNames: Array[String]
- Definition Classes
- LightGBMSlotParams
-
def
getSlotNamesWithMetadata(featuresSchema: StructField): Option[Array[String]]
- Definition Classes
- LightGBMBase
-
def
getTimeout: Double
- Definition Classes
- LightGBMExecutionParams
-
def
getTopK: Int
- Definition Classes
- LightGBMExecutionParams
-
def
getTopRate: Double
- Definition Classes
- LightGBMLearnerParams
-
def
getTrainParams(numTasks: Int, featuresSchema: StructField, numTasksPerExec: Int): BaseTrainParams
Gets the training parameters.
Gets the training parameters.
- numTasks
The total number of tasks.
- featuresSchema
The features column schema.
- numTasksPerExec
The number of tasks per executor.
- returns
train parameters.
- Definition Classes
- LightGBMRanker → LightGBMBase
-
def
getTrainingCols: Array[(String, Seq[DataType])]
- Attributes
- protected
- Definition Classes
- LightGBMBase
-
def
getTrainingContext(dataframe: DataFrame, validationData: Option[Broadcast[Array[Row]]], broadcastedSampleData: Option[Broadcast[Array[Row]]], partitionCounts: Option[Array[Long]], trainParams: BaseTrainParams, numCols: Int, numInitValueClasses: Int, batchIndex: Int, numTasksPerExecutor: Int, networkManager: NetworkManager): TrainingContext
Get the object that holds all relevant context information for the training session.
Get the object that holds all relevant context information for the training session.
- dataframe
The dataset to train on.
- validationData
The dataset to use as validation. (optional)
- broadcastedSampleData
Sample data to use for streaming mode Dataset creation (optional).
- partitionCounts
The count per partition for streaming mode (optional).
- trainParams
Training parameters.
- numCols
Number of columns.
- numInitValueClasses
Number of classes for initial values (used only for multiclass).
- batchIndex
In running in batch training mode, gets the batch number.
- numTasksPerExecutor
Number of tasks per executor.
- networkManager
The network manager.
- returns
The context of the training session.
- Attributes
- protected
- Definition Classes
- LightGBMBase
-
def
getUniformDrop: Boolean
- Definition Classes
- LightGBMDartParams
-
def
getUseBarrierExecutionMode: Boolean
- Definition Classes
- LightGBMExecutionParams
-
def
getUseMissing: Boolean
- Definition Classes
- LightGBMDatasetParams
-
def
getUseSingleDatasetMode: Boolean
- Definition Classes
- LightGBMExecutionParams
-
def
getValidationIndicatorCol: String
- Definition Classes
- HasValidationIndicatorCol
-
def
getVerbosity: Int
- Definition Classes
- LightGBMParams
-
def
getWeightCol: String
- Definition Classes
- HasWeightCol
-
def
getXGBoostDartMode: Boolean
- Definition Classes
- LightGBMDartParams
-
def
getZeroAsMissing: Boolean
- Definition Classes
- LightGBMDatasetParams
-
val
groupCol: Param[String]
The name of the group column
The name of the group column
- Definition Classes
- HasGroupCol
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
val
improvementTolerance: DoubleParam
- Definition Classes
- LightGBMLearnerParams
-
def
initPerformanceMeasures(batchCount: Int): Unit
- Attributes
- protected
- Definition Classes
- LightGBMPerformance
-
val
initScoreCol: Param[String]
The name of the initial score column
The name of the initial score column
- Definition Classes
- HasInitScoreCol
-
def
initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
def
initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
val
isEnableSparse: BooleanParam
- Definition Classes
- LightGBMDatasetParams
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
val
isProvideTrainingMetric: BooleanParam
- Definition Classes
- LightGBMParams
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
def
isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
final
val
labelCol: Param[String]
- Definition Classes
- HasLabelCol
- val labelGain: DoubleArrayParam
-
val
lambdaL1: DoubleParam
- Definition Classes
- LightGBMParams
-
val
lambdaL2: DoubleParam
- Definition Classes
- LightGBMParams
-
val
leafPredictionCol: Param[String]
- Definition Classes
- LightGBMPredictionParams
-
val
learningRate: DoubleParam
- Definition Classes
- LightGBMParams
-
def
log: Logger
- Attributes
- protected
- Definition Classes
- Logging
-
def
logBase(info: SynapseMLLogInfo): Unit
- Attributes
- protected
- Definition Classes
- SynapseMLLogging
-
def
logBase(methodName: String, columns: Option[Int]): Unit
- Attributes
- protected
- Definition Classes
- SynapseMLLogging
-
def
logClass(): Unit
- Definition Classes
- SynapseMLLogging
-
def
logDebug(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logErrorBase(methodName: String, e: Exception): Unit
- Attributes
- protected
- Definition Classes
- SynapseMLLogging
-
def
logFit[T](f: ⇒ T, columns: Int): T
- Definition Classes
- SynapseMLLogging
-
def
logInfo(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logName: String
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrain[T](f: ⇒ T, columns: Int): T
- Definition Classes
- SynapseMLLogging
-
def
logTransform[T](f: ⇒ T, columns: Int): T
- Definition Classes
- SynapseMLLogging
-
def
logVerb[T](verb: String, f: ⇒ T, columns: Int = -1): T
- Definition Classes
- SynapseMLLogging
-
def
logWarning(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
makeDotnetFile(conf: CodegenConfig): Unit
- Definition Classes
- DotnetWrappable
-
def
makePyFile(conf: CodegenConfig): Unit
- Definition Classes
- PythonWrappable
-
def
makeRFile(conf: CodegenConfig): Unit
- Definition Classes
- RWrappable
-
val
matrixType: Param[String]
- Definition Classes
- LightGBMExecutionParams
-
val
maxBin: IntParam
- Definition Classes
- LightGBMBinParams
-
val
maxBinByFeature: IntArrayParam
- Definition Classes
- LightGBMParams
-
val
maxCatThreshold: IntParam
- Definition Classes
- LightGBMCategoricalParams
-
val
maxCatToOnehot: IntParam
- Definition Classes
- LightGBMCategoricalParams
-
val
maxDeltaStep: DoubleParam
- Definition Classes
- LightGBMParams
-
val
maxDepth: IntParam
- Definition Classes
- LightGBMParams
-
val
maxDrop: IntParam
- Definition Classes
- LightGBMDartParams
-
val
maxNumClasses: IntParam
- Definition Classes
- LightGBMParams
- val maxPosition: IntParam
-
val
maxStreamingOMPThreads: IntParam
- Definition Classes
- LightGBMExecutionParams
-
val
metric: Param[String]
- Definition Classes
- LightGBMParams
-
val
microBatchSize: IntParam
- Definition Classes
- LightGBMExecutionParams
-
val
minDataInLeaf: IntParam
- Definition Classes
- LightGBMParams
-
val
minDataPerBin: IntParam
- Definition Classes
- LightGBMParams
-
val
minDataPerGroup: IntParam
- Definition Classes
- LightGBMCategoricalParams
-
val
minGainToSplit: DoubleParam
- Definition Classes
- LightGBMParams
-
val
minSumHessianInLeaf: DoubleParam
- Definition Classes
- LightGBMParams
-
val
modelString: Param[String]
- Definition Classes
- LightGBMParams
-
val
monotoneConstraints: IntArrayParam
- Definition Classes
- LightGBMLearnerParams
-
val
monotoneConstraintsMethod: Param[String]
- Definition Classes
- LightGBMLearnerParams
-
val
monotonePenalty: DoubleParam
- Definition Classes
- LightGBMLearnerParams
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
val
negBaggingFraction: DoubleParam
- Definition Classes
- LightGBMFractionParams
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
val
numBatches: IntParam
- Definition Classes
- LightGBMExecutionParams
-
val
numIterations: IntParam
- Definition Classes
- LightGBMParams
-
val
numLeaves: IntParam
- Definition Classes
- LightGBMParams
-
val
numTasks: IntParam
- Definition Classes
- LightGBMExecutionParams
-
val
numThreads: IntParam
- Definition Classes
- LightGBMExecutionParams
-
val
objective: Param[String]
- Definition Classes
- LightGBMObjectiveParams
-
val
objectiveSeed: IntParam
- Definition Classes
- LightGBMSeedParams
-
val
otherRate: DoubleParam
- Definition Classes
- LightGBMLearnerParams
-
val
parallelism: Param[String]
- Definition Classes
- LightGBMExecutionParams
-
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
val
passThroughArgs: Param[String]
- Definition Classes
- LightGBMExecutionParams
-
val
posBaggingFraction: DoubleParam
- Definition Classes
- LightGBMFractionParams
-
val
predictDisableShapeCheck: BooleanParam
- Definition Classes
- LightGBMPredictionParams
-
final
val
predictionCol: Param[String]
- Definition Classes
- HasPredictionCol
-
def
prepareDataframe(dataset: Dataset[_], numTasks: Int): DataFrame
- Definition Classes
- LightGBMRanker → LightGBMBase
-
def
preprocessData(df: DataFrame): DataFrame
For Ranking, we need to sort the data within partitions by group prior to training to ensure training succeeds.
For Ranking, we need to sort the data within partitions by group prior to training to ensure training succeeds.
- df
The data frame to preprocess prior to training.
- returns
The preprocessed data, sorted within partition by group.
- Definition Classes
- LightGBMRanker → LightGBMBase
-
def
pyAdditionalMethods: String
- Definition Classes
- PythonWrappable
-
lazy val
pyClassDoc: String
- Attributes
- protected
- Definition Classes
- PythonWrappable
-
lazy val
pyClassName: String
- Attributes
- protected
- Definition Classes
- PythonWrappable
-
def
pyExtraEstimatorImports: String
- Attributes
- protected
- Definition Classes
- PythonWrappable
-
def
pyExtraEstimatorMethods: String
- Attributes
- protected
- Definition Classes
- PythonWrappable
-
lazy val
pyInheritedClasses: Seq[String]
- Attributes
- protected
- Definition Classes
- PythonWrappable
-
def
pyInitFunc(): String
- Definition Classes
- PythonWrappable
-
lazy val
pyInternalWrapper: Boolean
- Attributes
- protected
- Definition Classes
- PythonWrappable
-
lazy val
pyObjectBaseClass: String
- Attributes
- protected
- Definition Classes
- PythonWrappable
-
def
pyParamArg[T](p: Param[T]): String
- Attributes
- protected
- Definition Classes
- PythonWrappable
-
def
pyParamDefault[T](p: Param[T]): Option[String]
- Attributes
- protected
- Definition Classes
- PythonWrappable
-
def
pyParamGetter(p: Param[_]): String
- Attributes
- protected
- Definition Classes
- PythonWrappable
-
def
pyParamSetter(p: Param[_]): String
- Attributes
- protected
- Definition Classes
- PythonWrappable
-
def
pyParamsArgs: String
- Attributes
- protected
- Definition Classes
- PythonWrappable
-
def
pyParamsDefaults: String
- Attributes
- protected
- Definition Classes
- PythonWrappable
-
lazy val
pyParamsDefinitions: String
- Attributes
- protected
- Definition Classes
- PythonWrappable
-
def
pyParamsGetters: String
- Attributes
- protected
- Definition Classes
- PythonWrappable
-
def
pyParamsSetters: String
- Attributes
- protected
- Definition Classes
- PythonWrappable
-
def
pythonClass(): String
- Attributes
- protected
- Definition Classes
- PythonWrappable
-
def
rClass(): String
- Attributes
- protected
- Definition Classes
- RWrappable
-
def
rDocString: String
- Attributes
- protected
- Definition Classes
- RWrappable
-
def
rExtraBodyLines: String
- Attributes
- protected
- Definition Classes
- RWrappable
-
def
rExtraInitLines: String
- Attributes
- protected
- Definition Classes
- RWrappable
-
lazy val
rFuncName: String
- Attributes
- protected
- Definition Classes
- RWrappable
-
lazy val
rInternalWrapper: Boolean
- Attributes
- protected
- Definition Classes
- RWrappable
-
def
rParamArg[T](p: Param[T]): String
- Attributes
- protected
- Definition Classes
- RWrappable
-
def
rParamsArgs: String
- Attributes
- protected
- Definition Classes
- RWrappable
-
def
rSetterLines: String
- Attributes
- protected
- Definition Classes
- RWrappable
-
val
repartitionByGroupingColumn: BooleanParam
- Definition Classes
- LightGBMExecutionParams
-
def
save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
val
seed: IntParam
- Definition Classes
- LightGBMSeedParams
-
final
def
set(paramPair: ParamPair[_]): LightGBMRanker.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set(param: String, value: Any): LightGBMRanker.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set[T](param: Param[T], value: T): LightGBMRanker.this.type
- Definition Classes
- Params
-
def
setBaggingFraction(value: Double): LightGBMRanker.this.type
- Definition Classes
- LightGBMFractionParams
-
def
setBaggingFreq(value: Int): LightGBMRanker.this.type
- Definition Classes
- LightGBMParams
-
def
setBaggingSeed(value: Int): LightGBMRanker.this.type
- Definition Classes
- LightGBMSeedParams
-
def
setBatchPerformanceMeasure(index: Int, measures: InstrumentationMeasures): Unit
- Attributes
- protected
- Definition Classes
- LightGBMPerformance
-
def
setBatchPerformanceMeasures(measures: Array[Option[InstrumentationMeasures]]): LightGBMRanker.this.type
- Attributes
- protected
- Definition Classes
- LightGBMPerformance
-
def
setBinSampleCount(value: Int): LightGBMRanker.this.type
- Definition Classes
- LightGBMBinParams
-
def
setBoostFromAverage(value: Boolean): LightGBMRanker.this.type
- Definition Classes
- LightGBMParams
-
def
setBoostingType(value: String): LightGBMRanker.this.type
- Definition Classes
- LightGBMParams
-
def
setCatSmooth(value: Double): LightGBMRanker.this.type
- Definition Classes
- LightGBMCategoricalParams
-
def
setCategoricalSlotIndexes(value: Array[Int]): LightGBMRanker.this.type
- Definition Classes
- LightGBMSlotParams
-
def
setCategoricalSlotNames(value: Array[String]): LightGBMRanker.this.type
- Definition Classes
- LightGBMSlotParams
-
def
setCatl2(value: Double): LightGBMRanker.this.type
- Definition Classes
- LightGBMCategoricalParams
-
def
setChunkSize(value: Int): LightGBMRanker.this.type
- Definition Classes
- LightGBMExecutionParams
-
def
setDataRandomSeed(value: Int): LightGBMRanker.this.type
- Definition Classes
- LightGBMSeedParams
-
final
def
setDefault(paramPairs: ParamPair[_]*): LightGBMRanker.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
setDefault[T](param: Param[T], value: T): LightGBMRanker.this.type
- Attributes
- protected
- Definition Classes
- Params
-
def
setDefaultListenPort(value: Int): LightGBMRanker.this.type
- Definition Classes
- LightGBMExecutionParams
-
def
setDelegate(delegate: LightGBMDelegate): LightGBMRanker.this.type
- Definition Classes
- LightGBMParams
-
def
setDeterministic(value: Boolean): LightGBMRanker.this.type
- Definition Classes
- LightGBMSeedParams
-
def
setDriverListenPort(value: Int): LightGBMRanker.this.type
- Definition Classes
- LightGBMExecutionParams
-
def
setDropRate(value: Double): LightGBMRanker.this.type
- Definition Classes
- LightGBMDartParams
-
def
setDropSeed(value: Int): LightGBMRanker.this.type
- Definition Classes
- LightGBMSeedParams
-
def
setEarlyStoppingRound(value: Int): LightGBMRanker.this.type
- Definition Classes
- LightGBMLearnerParams
- def setEvalAt(value: Array[Int]): LightGBMRanker.this.type
-
def
setExecutionMode(value: String): LightGBMRanker.this.type
- Definition Classes
- LightGBMExecutionParams
-
def
setExtraSeed(value: Int): LightGBMRanker.this.type
- Definition Classes
- LightGBMSeedParams
-
def
setFObj(value: FObjTrait): LightGBMRanker.this.type
- Definition Classes
- LightGBMObjectiveParams
-
def
setFeatureFraction(value: Double): LightGBMRanker.this.type
- Definition Classes
- LightGBMFractionParams
-
def
setFeatureFractionByNode(value: Double): LightGBMRanker.this.type
- Definition Classes
- LightGBMFractionParams
-
def
setFeatureFractionSeed(value: Int): LightGBMRanker.this.type
- Definition Classes
- LightGBMSeedParams
-
def
setFeaturesCol(value: String): LightGBMRanker
- Definition Classes
- Predictor
-
def
setFeaturesShapCol(value: String): LightGBMRanker.this.type
- Definition Classes
- LightGBMPredictionParams
-
def
setGroupCol(value: String): LightGBMRanker.this.type
- Definition Classes
- HasGroupCol
-
def
setImprovementTolerance(value: Double): LightGBMRanker.this.type
- Definition Classes
- LightGBMLearnerParams
-
def
setInitScoreCol(value: String): LightGBMRanker.this.type
- Definition Classes
- HasInitScoreCol
-
def
setIsEnableSparse(value: Boolean): LightGBMRanker.this.type
- Definition Classes
- LightGBMDatasetParams
-
def
setIsProvideTrainingMetric(value: Boolean): LightGBMRanker.this.type
- Definition Classes
- LightGBMParams
-
def
setLabelCol(value: String): LightGBMRanker
- Definition Classes
- Predictor
- def setLabelGain(value: Array[Double]): LightGBMRanker.this.type
-
def
setLambdaL1(value: Double): LightGBMRanker.this.type
- Definition Classes
- LightGBMParams
-
def
setLambdaL2(value: Double): LightGBMRanker.this.type
- Definition Classes
- LightGBMParams
-
def
setLeafPredictionCol(value: String): LightGBMRanker.this.type
- Definition Classes
- LightGBMPredictionParams
-
def
setLearningRate(value: Double): LightGBMRanker.this.type
- Definition Classes
- LightGBMParams
-
def
setMatrixType(value: String): LightGBMRanker.this.type
- Definition Classes
- LightGBMExecutionParams
-
def
setMaxBin(value: Int): LightGBMRanker.this.type
- Definition Classes
- LightGBMBinParams
-
def
setMaxBinByFeature(value: Array[Int]): LightGBMRanker.this.type
- Definition Classes
- LightGBMParams
-
def
setMaxCatThreshold(value: Int): LightGBMRanker.this.type
- Definition Classes
- LightGBMCategoricalParams
-
def
setMaxCatToOnehot(value: Int): LightGBMRanker.this.type
- Definition Classes
- LightGBMCategoricalParams
-
def
setMaxDeltaStep(value: Double): LightGBMRanker.this.type
- Definition Classes
- LightGBMParams
-
def
setMaxDepth(value: Int): LightGBMRanker.this.type
- Definition Classes
- LightGBMParams
-
def
setMaxDrop(value: Int): LightGBMRanker.this.type
- Definition Classes
- LightGBMDartParams
-
def
setMaxNumClasses(value: Int): LightGBMRanker.this.type
- Definition Classes
- LightGBMParams
- def setMaxPosition(value: Int): LightGBMRanker.this.type
-
def
setMaxStreamingOMPThreads(value: Int): LightGBMRanker.this.type
- Definition Classes
- LightGBMExecutionParams
-
def
setMetric(value: String): LightGBMRanker.this.type
- Definition Classes
- LightGBMParams
-
def
setMicroBatchSize(value: Int): LightGBMRanker.this.type
- Definition Classes
- LightGBMExecutionParams
-
def
setMinDataInLeaf(value: Int): LightGBMRanker.this.type
- Definition Classes
- LightGBMParams
-
def
setMinDataPerBin(value: Int): LightGBMRanker.this.type
- Definition Classes
- LightGBMParams
-
def
setMinDataPerGroup(value: Int): LightGBMRanker.this.type
- Definition Classes
- LightGBMCategoricalParams
-
def
setMinGainToSplit(value: Double): LightGBMRanker.this.type
- Definition Classes
- LightGBMParams
-
def
setMinSumHessianInLeaf(value: Double): LightGBMRanker.this.type
- Definition Classes
- LightGBMParams
-
def
setModelString(value: String): LightGBMRanker.this.type
- Definition Classes
- LightGBMParams
-
def
setMonotoneConstraints(value: Array[Int]): LightGBMRanker.this.type
- Definition Classes
- LightGBMLearnerParams
-
def
setMonotoneConstraintsMethod(value: String): LightGBMRanker.this.type
- Definition Classes
- LightGBMLearnerParams
-
def
setMonotonePenalty(value: Double): LightGBMRanker.this.type
- Definition Classes
- LightGBMLearnerParams
-
def
setNegBaggingFraction(value: Double): LightGBMRanker.this.type
- Definition Classes
- LightGBMFractionParams
-
def
setNumBatches(value: Int): LightGBMRanker.this.type
- Definition Classes
- LightGBMExecutionParams
-
def
setNumIterations(value: Int): LightGBMRanker.this.type
- Definition Classes
- LightGBMParams
-
def
setNumLeaves(value: Int): LightGBMRanker.this.type
- Definition Classes
- LightGBMParams
-
def
setNumTasks(value: Int): LightGBMRanker.this.type
- Definition Classes
- LightGBMExecutionParams
-
def
setNumThreads(value: Int): LightGBMRanker.this.type
- Definition Classes
- LightGBMExecutionParams
-
def
setObjective(value: String): LightGBMRanker.this.type
- Definition Classes
- LightGBMObjectiveParams
-
def
setObjectiveSeed(value: Int): LightGBMRanker.this.type
- Definition Classes
- LightGBMSeedParams
-
def
setOtherRate(value: Double): LightGBMRanker.this.type
- Definition Classes
- LightGBMLearnerParams
-
def
setParallelism(value: String): LightGBMRanker.this.type
- Definition Classes
- LightGBMExecutionParams
-
def
setPassThroughArgs(value: String): LightGBMRanker.this.type
- Definition Classes
- LightGBMExecutionParams
-
def
setPosBaggingFraction(value: Double): LightGBMRanker.this.type
- Definition Classes
- LightGBMFractionParams
-
def
setPredictDisableShapeCheck(value: Boolean): LightGBMRanker.this.type
- Definition Classes
- LightGBMPredictionParams
-
def
setPredictionCol(value: String): LightGBMRanker
- Definition Classes
- Predictor
-
def
setRepartitionByGroupingColumn(value: Boolean): LightGBMRanker.this.type
- Definition Classes
- LightGBMExecutionParams
-
def
setSeed(value: Int): LightGBMRanker.this.type
- Definition Classes
- LightGBMSeedParams
-
def
setSkipDrop(value: Double): LightGBMRanker.this.type
- Definition Classes
- LightGBMDartParams
-
def
setSlotNames(value: Array[String]): LightGBMRanker.this.type
- Definition Classes
- LightGBMSlotParams
-
def
setTimeout(value: Double): LightGBMRanker.this.type
- Definition Classes
- LightGBMExecutionParams
-
def
setTopK(value: Int): LightGBMRanker.this.type
- Definition Classes
- LightGBMExecutionParams
-
def
setTopRate(value: Double): LightGBMRanker.this.type
- Definition Classes
- LightGBMLearnerParams
-
def
setUniformDrop(value: Boolean): LightGBMRanker.this.type
- Definition Classes
- LightGBMDartParams
-
def
setUseBarrierExecutionMode(value: Boolean): LightGBMRanker.this.type
- Definition Classes
- LightGBMExecutionParams
-
def
setUseMissing(value: Boolean): LightGBMRanker.this.type
- Definition Classes
- LightGBMDatasetParams
-
def
setUseSingleDatasetMode(value: Boolean): LightGBMRanker.this.type
- Definition Classes
- LightGBMExecutionParams
-
def
setValidationIndicatorCol(value: String): LightGBMRanker.this.type
- Definition Classes
- HasValidationIndicatorCol
-
def
setVerbosity(value: Int): LightGBMRanker.this.type
- Definition Classes
- LightGBMParams
-
def
setWeightCol(value: String): LightGBMRanker.this.type
- Definition Classes
- HasWeightCol
-
def
setXGBoostDartMode(value: Boolean): LightGBMRanker.this.type
- Definition Classes
- LightGBMDartParams
-
def
setZeroAsMissing(value: Boolean): LightGBMRanker.this.type
- Definition Classes
- LightGBMDatasetParams
-
val
skipDrop: DoubleParam
- Definition Classes
- LightGBMDartParams
-
val
slotNames: StringArrayParam
- Definition Classes
- LightGBMSlotParams
-
def
stringFromTrainedModel(model: LightGBMRankerModel): String
- Definition Classes
- LightGBMRanker → LightGBMBase
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
val
thisStage: Params
- Attributes
- protected
- Definition Classes
- BaseWrappable
-
val
timeout: DoubleParam
- Definition Classes
- LightGBMExecutionParams
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
val
topK: IntParam
- Definition Classes
- LightGBMExecutionParams
-
val
topRate: DoubleParam
- Definition Classes
- LightGBMLearnerParams
-
def
train(dataset: Dataset[_]): LightGBMRankerModel
Trains the LightGBM model.
Trains the LightGBM model. If batches are specified, breaks training dataset into batches for training.
- dataset
The input dataset to train.
- returns
The trained model.
- Attributes
- protected
- Definition Classes
- LightGBMBase
-
def
trainOneDataBatch(dataset: Dataset[_], batchIndex: Int, batchCount: Int): LightGBMRankerModel
Inner train method for LightGBM learners.
Inner train method for LightGBM learners. Calculates the number of workers, creates a driver thread, and runs mapPartitions on the dataset.
- dataset
The dataset to train on.
- batchIndex
In running in batch training mode, gets the batch number.
- returns
The LightGBM Model from the trained LightGBM Booster.
- Attributes
- protected
- Definition Classes
- LightGBMBase
-
def
transformSchema(schema: StructType): StructType
- Definition Classes
- Predictor → PipelineStage
-
def
transformSchema(schema: StructType, logging: Boolean): StructType
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
-
val
uid: String
- Definition Classes
- LightGBMRanker → SynapseMLLogging → Identifiable
-
val
uniformDrop: BooleanParam
- Definition Classes
- LightGBMDartParams
-
val
useBarrierExecutionMode: BooleanParam
- Definition Classes
- LightGBMExecutionParams
-
val
useMissing: BooleanParam
- Definition Classes
- LightGBMDatasetParams
-
val
useSingleDatasetMode: BooleanParam
- Definition Classes
- LightGBMExecutionParams
-
def
validateAndTransformSchema(schema: StructType, fitting: Boolean, featuresDataType: DataType): StructType
- Attributes
- protected
- Definition Classes
- PredictorParams
-
val
validationIndicatorCol: Param[String]
The name of the validation indicator column
The name of the validation indicator column
- Definition Classes
- HasValidationIndicatorCol
-
val
verbosity: IntParam
- Definition Classes
- LightGBMParams
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
val
weightCol: Param[String]
The name of the weight column
The name of the weight column
- Definition Classes
- HasWeightCol
-
def
write: MLWriter
- Definition Classes
- DefaultParamsWritable → MLWritable
-
val
xGBoostDartMode: BooleanParam
- Definition Classes
- LightGBMDartParams
-
val
zeroAsMissing: BooleanParam
- Definition Classes
- LightGBMDatasetParams