class OrthoForestDMLModel extends Model[OrthoForestDMLModel] with OrthoForestDMLParams with ComplexParamsWritable with Wrappable with SynapseMLLogging

Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. OrthoForestDMLModel
  2. SynapseMLLogging
  3. Wrappable
  4. DotnetWrappable
  5. RWrappable
  6. PythonWrappable
  7. BaseWrappable
  8. ComplexParamsWritable
  9. MLWritable
  10. OrthoForestDMLParams
  11. HasOutputCol
  12. HasMinSampleLeaf
  13. HasMaxDepth
  14. HasNumTrees
  15. DoubleMLParams
  16. HasParallelismInjected
  17. HasParallelism
  18. HasWeightCol
  19. HasMaxIter
  20. HasFeaturesCol
  21. HasOutcomeCol
  22. HasTreatmentCol
  23. Model
  24. Transformer
  25. PipelineStage
  26. Logging
  27. Params
  28. Serializable
  29. Serializable
  30. Identifiable
  31. AnyRef
  32. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new OrthoForestDMLModel()
  2. new OrthoForestDMLModel(uid: String)

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T
    Attributes
    protected
    Definition Classes
    Params
  4. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  5. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  6. def awaitFutures[T](futures: Array[Future[T]]): Seq[T]
    Attributes
    protected
    Definition Classes
    HasParallelismInjected
  7. lazy val classNameHelper: String
    Attributes
    protected
    Definition Classes
    BaseWrappable
  8. final def clear(param: Param[_]): OrthoForestDMLModel.this.type
    Definition Classes
    Params
  9. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  10. def companionModelClassName: String
    Attributes
    protected
    Definition Classes
    BaseWrappable
  11. val confidenceLevel: DoubleParam
    Definition Classes
    DoubleMLParams
  12. val confounderVecCol: Param[String]
    Definition Classes
    OrthoForestDMLParams
  13. def copy(extra: ParamMap): OrthoForestDMLModel
    Definition Classes
    OrthoForestDMLModel → Model → Transformer → PipelineStage → Params
  14. def copyValues[T <: Params](to: T, extra: ParamMap): T
    Attributes
    protected
    Definition Classes
    Params
  15. lazy val copyrightLines: String
    Attributes
    protected
    Definition Classes
    BaseWrappable
  16. final def defaultCopy[T <: Params](extra: ParamMap): T
    Attributes
    protected
    Definition Classes
    Params
  17. def dotnetAdditionalMethods: String
    Definition Classes
    DotnetWrappable
  18. def dotnetClass(): String
    Attributes
    protected
    Definition Classes
    DotnetWrappable
  19. lazy val dotnetClassName: String
    Attributes
    protected
    Definition Classes
    DotnetWrappable
  20. lazy val dotnetClassNameString: String
    Attributes
    protected
    Definition Classes
    DotnetWrappable
  21. lazy val dotnetClassWrapperName: String
    Attributes
    protected
    Definition Classes
    DotnetWrappable
  22. lazy val dotnetCopyrightLines: String
    Attributes
    protected
    Definition Classes
    DotnetWrappable
  23. def dotnetExtraEstimatorImports: String
    Attributes
    protected
    Definition Classes
    DotnetWrappable
  24. def dotnetExtraMethods: String
    Attributes
    protected
    Definition Classes
    DotnetWrappable
  25. lazy val dotnetInternalWrapper: Boolean
    Attributes
    protected
    Definition Classes
    DotnetWrappable
  26. def dotnetMLReadWriteMethods: String
    Attributes
    protected
    Definition Classes
    DotnetWrappable
  27. lazy val dotnetNamespace: String
    Attributes
    protected
    Definition Classes
    DotnetWrappable
  28. lazy val dotnetObjectBaseClass: String
    Attributes
    protected
    Definition Classes
    DotnetWrappable
  29. def dotnetParamGetter(p: Param[_]): String
    Attributes
    protected
    Definition Classes
    DotnetWrappable
  30. def dotnetParamGetters: String
    Attributes
    protected
    Definition Classes
    DotnetWrappable
  31. def dotnetParamSetter(p: Param[_]): String
    Attributes
    protected
    Definition Classes
    DotnetWrappable
  32. def dotnetParamSetters: String
    Attributes
    protected
    Definition Classes
    DotnetWrappable
  33. def dotnetWrapAsTypeMethod: String
    Attributes
    protected
    Definition Classes
    DotnetWrappable
  34. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  35. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  36. def explainParam(param: Param[_]): String
    Definition Classes
    Params
  37. def explainParams(): String
    Definition Classes
    Params
  38. final def extractParamMap(): ParamMap
    Definition Classes
    Params
  39. final def extractParamMap(extra: ParamMap): ParamMap
    Definition Classes
    Params
  40. val featuresCol: Param[String]

    The name of the features column

    The name of the features column

    Definition Classes
    HasFeaturesCol
  41. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  42. val forest: TransformerArrayParam
  43. final def get[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  44. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  45. def getConfidenceLevel: Double
    Definition Classes
    DoubleMLParams
  46. def getConfounderVecCol: String
    Definition Classes
    OrthoForestDMLParams
  47. final def getDefault[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  48. def getExecutionContextProxy: ExecutionContext
    Definition Classes
    HasParallelismInjected
  49. def getFeaturesCol: String

    Definition Classes
    HasFeaturesCol
  50. def getHeterogeneityVecCol: String
    Definition Classes
    OrthoForestDMLParams
  51. def getMaxDepth: Int
    Definition Classes
    HasMaxDepth
  52. final def getMaxIter: Int
    Definition Classes
    HasMaxIter
  53. def getMinSamplesLeaf: Int
    Definition Classes
    HasMinSampleLeaf
  54. def getNumTrees: Int
    Definition Classes
    HasNumTrees
  55. final def getOrDefault[T](param: Param[T]): T
    Definition Classes
    Params
  56. def getOutcomeCol: String
    Definition Classes
    HasOutcomeCol
  57. def getOutcomeModel: Estimator[_ <: Model[_]]
    Definition Classes
    DoubleMLParams
  58. def getOutcomeResidualCol: String
    Definition Classes
    OrthoForestDMLParams
  59. def getOutputCol: String

    Definition Classes
    HasOutputCol
  60. def getOutputHighCol: String
    Definition Classes
    OrthoForestDMLParams
  61. def getOutputLowCol: String
    Definition Classes
    OrthoForestDMLParams
  62. def getParallelism: Int
    Definition Classes
    HasParallelism
  63. def getParam(paramName: String): Param[Any]
    Definition Classes
    Params
  64. def getParamInfo(p: Param[_]): ParamInfo[_]
    Definition Classes
    BaseWrappable
  65. def getSampleSplitRatio: Array[Double]
    Definition Classes
    DoubleMLParams
  66. def getTreatmentCol: String
    Definition Classes
    HasTreatmentCol
  67. def getTreatmentModel: Estimator[_ <: Model[_]]
    Definition Classes
    DoubleMLParams
  68. def getTreatmentResidualCol: String
    Definition Classes
    OrthoForestDMLParams
  69. def getWeightCol: String

    Definition Classes
    HasWeightCol
  70. final def hasDefault[T](param: Param[T]): Boolean
    Definition Classes
    Params
  71. def hasParam(paramName: String): Boolean
    Definition Classes
    Params
  72. def hasParent: Boolean
    Definition Classes
    Model
  73. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  74. val heterogeneityVecCol: Param[String]
    Definition Classes
    OrthoForestDMLParams
  75. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  76. def initializeLogIfNecessary(isInterpreter: Boolean): Unit
    Attributes
    protected
    Definition Classes
    Logging
  77. final def isDefined(param: Param[_]): Boolean
    Definition Classes
    Params
  78. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  79. final def isSet(param: Param[_]): Boolean
    Definition Classes
    Params
  80. def isTraceEnabled(): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  81. def log: Logger
    Attributes
    protected
    Definition Classes
    Logging
  82. def logBase(info: SynapseMLLogInfo): Unit
    Attributes
    protected
    Definition Classes
    SynapseMLLogging
  83. def logBase(methodName: String, columns: Option[Int]): Unit
    Attributes
    protected
    Definition Classes
    SynapseMLLogging
  84. def logClass(): Unit
    Definition Classes
    SynapseMLLogging
  85. def logDebug(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  86. def logDebug(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  87. def logError(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  88. def logError(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  89. def logErrorBase(methodName: String, e: Exception): Unit
    Attributes
    protected
    Definition Classes
    SynapseMLLogging
  90. def logFit[T](f: ⇒ T, columns: Int): T
    Definition Classes
    SynapseMLLogging
  91. def logInfo(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  92. def logInfo(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  93. def logName: String
    Attributes
    protected
    Definition Classes
    Logging
  94. def logTrace(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  95. def logTrace(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  96. def logTrain[T](f: ⇒ T, columns: Int): T
    Definition Classes
    SynapseMLLogging
  97. def logTransform[T](f: ⇒ T, columns: Int): T
    Definition Classes
    SynapseMLLogging
  98. def logVerb[T](verb: String, f: ⇒ T, columns: Int = -1): T
    Definition Classes
    SynapseMLLogging
  99. def logWarning(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  100. def logWarning(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  101. def makeDotnetFile(conf: CodegenConfig): Unit
    Definition Classes
    DotnetWrappable
  102. def makePyFile(conf: CodegenConfig): Unit
    Definition Classes
    PythonWrappable
  103. def makeRFile(conf: CodegenConfig): Unit
    Definition Classes
    RWrappable
  104. val maxDepth: IntParam
    Definition Classes
    HasMaxDepth
  105. final val maxIter: IntParam
    Definition Classes
    HasMaxIter
  106. val minSamplesLeaf: IntParam
    Definition Classes
    HasMinSampleLeaf
  107. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  108. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  109. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  110. val numTrees: IntParam
    Definition Classes
    HasNumTrees
  111. val outcomeCol: Param[String]
    Definition Classes
    HasOutcomeCol
  112. val outcomeModel: EstimatorParam
    Definition Classes
    DoubleMLParams
  113. val outcomeResidualCol: Param[String]
    Definition Classes
    OrthoForestDMLParams
  114. val outputCol: Param[String]

    The name of the output column

    The name of the output column

    Definition Classes
    HasOutputCol
  115. val outputHighCol: Param[String]
    Definition Classes
    OrthoForestDMLParams
  116. val outputLowCol: Param[String]
    Definition Classes
    OrthoForestDMLParams
  117. val parallelism: IntParam
    Definition Classes
    HasParallelism
  118. lazy val params: Array[Param[_]]
    Definition Classes
    Params
  119. var parent: Estimator[OrthoForestDMLModel]
    Definition Classes
    Model
  120. def pyAdditionalMethods: String
    Definition Classes
    PythonWrappable
  121. lazy val pyClassDoc: String
    Attributes
    protected
    Definition Classes
    PythonWrappable
  122. lazy val pyClassName: String
    Attributes
    protected
    Definition Classes
    PythonWrappable
  123. def pyExtraEstimatorImports: String
    Attributes
    protected
    Definition Classes
    PythonWrappable
  124. def pyExtraEstimatorMethods: String
    Attributes
    protected
    Definition Classes
    PythonWrappable
  125. lazy val pyInheritedClasses: Seq[String]
    Attributes
    protected
    Definition Classes
    PythonWrappable
  126. def pyInitFunc(): String
    Definition Classes
    PythonWrappable
  127. lazy val pyInternalWrapper: Boolean
    Attributes
    protected
    Definition Classes
    OrthoForestDMLModelPythonWrappable
  128. lazy val pyObjectBaseClass: String
    Attributes
    protected
    Definition Classes
    PythonWrappable
  129. def pyParamArg[T](p: Param[T]): String
    Attributes
    protected
    Definition Classes
    PythonWrappable
  130. def pyParamDefault[T](p: Param[T]): Option[String]
    Attributes
    protected
    Definition Classes
    PythonWrappable
  131. def pyParamGetter(p: Param[_]): String
    Attributes
    protected
    Definition Classes
    PythonWrappable
  132. def pyParamSetter(p: Param[_]): String
    Attributes
    protected
    Definition Classes
    PythonWrappable
  133. def pyParamsArgs: String
    Attributes
    protected
    Definition Classes
    PythonWrappable
  134. def pyParamsDefaults: String
    Attributes
    protected
    Definition Classes
    PythonWrappable
  135. lazy val pyParamsDefinitions: String
    Attributes
    protected
    Definition Classes
    PythonWrappable
  136. def pyParamsGetters: String
    Attributes
    protected
    Definition Classes
    PythonWrappable
  137. def pyParamsSetters: String
    Attributes
    protected
    Definition Classes
    PythonWrappable
  138. def pythonClass(): String
    Attributes
    protected
    Definition Classes
    PythonWrappable
  139. def rClass(): String
    Attributes
    protected
    Definition Classes
    RWrappable
  140. def rDocString: String
    Attributes
    protected
    Definition Classes
    RWrappable
  141. def rExtraBodyLines: String
    Attributes
    protected
    Definition Classes
    RWrappable
  142. def rExtraInitLines: String
    Attributes
    protected
    Definition Classes
    RWrappable
  143. lazy val rFuncName: String
    Attributes
    protected
    Definition Classes
    RWrappable
  144. lazy val rInternalWrapper: Boolean
    Attributes
    protected
    Definition Classes
    RWrappable
  145. def rParamArg[T](p: Param[T]): String
    Attributes
    protected
    Definition Classes
    RWrappable
  146. def rParamsArgs: String
    Attributes
    protected
    Definition Classes
    RWrappable
  147. def rSetterLines: String
    Attributes
    protected
    Definition Classes
    RWrappable
  148. val sampleSplitRatio: DoubleArrayParam
    Definition Classes
    DoubleMLParams
  149. def save(path: String): Unit
    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  150. final def set(paramPair: ParamPair[_]): OrthoForestDMLModel.this.type
    Attributes
    protected
    Definition Classes
    Params
  151. final def set(param: String, value: Any): OrthoForestDMLModel.this.type
    Attributes
    protected
    Definition Classes
    Params
  152. final def set[T](param: Param[T], value: T): OrthoForestDMLModel.this.type
    Definition Classes
    Params
  153. def setConfidenceLevel(value: Double): OrthoForestDMLModel.this.type

    Set the higher bound percentile of ATE distribution.

    Set the higher bound percentile of ATE distribution. Default is 0.975. lower bound value will be automatically calculated as 100*(1-confidenceLevel) That means by default we compute 95% confidence interval, it is [2.5%, 97.5%] percentile of ATE distribution

    Definition Classes
    DoubleMLParams
  154. def setConfounderVecCol(value: String): OrthoForestDMLModel.this.type

    Set confounder vector column

    Set confounder vector column

    Definition Classes
    OrthoForestDMLParams
  155. final def setDefault(paramPairs: ParamPair[_]*): OrthoForestDMLModel.this.type
    Attributes
    protected
    Definition Classes
    Params
  156. final def setDefault[T](param: Param[T], value: T): OrthoForestDMLModel.this.type
    Attributes
    protected
    Definition Classes
    Params
  157. def setFeaturesCol(value: String): OrthoForestDMLModel.this.type

    Definition Classes
    HasFeaturesCol
  158. def setForest(v: Array[DecisionTreeRegressionModel]): OrthoForestDMLModel.this.type
  159. def setHeterogeneityVecCol(value: String): OrthoForestDMLModel.this.type

    Set heterogeneity vector column

    Set heterogeneity vector column

    Definition Classes
    OrthoForestDMLParams
  160. def setMaxDepth(value: Int): OrthoForestDMLModel.this.type

    Set max depth of the trees to be used in the forest

    Set max depth of the trees to be used in the forest

    Definition Classes
    HasMaxDepth
  161. def setMaxIter(value: Int): OrthoForestDMLModel.this.type

    Set the maximum number of confidence interval bootstrapping iterations.

    Set the maximum number of confidence interval bootstrapping iterations. Default is 1, which means it does not calculate confidence interval. To get Ci values please set a meaningful value

    Definition Classes
    DoubleMLParams
  162. def setMinSamplesLeaf(value: Int): OrthoForestDMLModel.this.type

    Set number of samples in the leaf node of trees to be used in the forest

    Set number of samples in the leaf node of trees to be used in the forest

    Definition Classes
    HasMinSampleLeaf
  163. def setNumTrees(value: Int): OrthoForestDMLModel.this.type

    Set number of trees to be used in the forest

    Set number of trees to be used in the forest

    Definition Classes
    HasNumTrees
  164. def setOutcomeCol(value: String): OrthoForestDMLModel.this.type

    Set name of the column which will be used as outcome

    Set name of the column which will be used as outcome

    Definition Classes
    HasOutcomeCol
  165. def setOutcomeModel(value: Estimator[_ <: Model[_]]): OrthoForestDMLModel.this.type

    Set outcome model, it could be any model derived from 'org.apache.spark.ml.regression.Regressor' or 'org.apache.spark.ml.classification.ProbabilisticClassifier'

    Set outcome model, it could be any model derived from 'org.apache.spark.ml.regression.Regressor' or 'org.apache.spark.ml.classification.ProbabilisticClassifier'

    Definition Classes
    DoubleMLParams
  166. def setOutcomeResidualCol(value: String): OrthoForestDMLModel.this.type

    Set outcome residual column

    Set outcome residual column

    Definition Classes
    OrthoForestDMLParams
  167. def setOutputCol(value: String): OrthoForestDMLModel.this.type

    Definition Classes
    HasOutputCol
  168. def setOutputHighCol(value: String): OrthoForestDMLModel.this.type

    Set output column for effect upper bound

    Set output column for effect upper bound

    Definition Classes
    OrthoForestDMLParams
  169. def setOutputLowCol(value: String): OrthoForestDMLModel.this.type

    Set output column for effect lower bound

    Set output column for effect lower bound

    Definition Classes
    OrthoForestDMLParams
  170. def setParallelism(value: Int): OrthoForestDMLModel.this.type
    Definition Classes
    DoubleMLParams
  171. def setParent(parent: Estimator[OrthoForestDMLModel]): OrthoForestDMLModel
    Definition Classes
    Model
  172. def setSampleSplitRatio(value: Array[Double]): OrthoForestDMLModel.this.type

    Set the sample split ratio, default is Array(0.5, 0.5)

    Set the sample split ratio, default is Array(0.5, 0.5)

    Definition Classes
    DoubleMLParams
  173. def setTreatmentCol(value: String): OrthoForestDMLModel.this.type

    Set name of the column which will be used as treatment

    Set name of the column which will be used as treatment

    Definition Classes
    HasTreatmentCol
  174. def setTreatmentModel(value: Estimator[_ <: Model[_]]): OrthoForestDMLModel.this.type

    Set treatment model, it could be any model derived from 'org.apache.spark.ml.regression.Regressor' or 'org.apache.spark.ml.classification.ProbabilisticClassifier'

    Set treatment model, it could be any model derived from 'org.apache.spark.ml.regression.Regressor' or 'org.apache.spark.ml.classification.ProbabilisticClassifier'

    Definition Classes
    DoubleMLParams
  175. def setTreatmentResidualCol(value: String): OrthoForestDMLModel.this.type

    Set treatment residual column

    Set treatment residual column

    Definition Classes
    OrthoForestDMLParams
  176. def setWeightCol(value: String): OrthoForestDMLModel.this.type

    Definition Classes
    HasWeightCol
  177. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  178. val thisStage: Params
    Attributes
    protected
    Definition Classes
    BaseWrappable
  179. def toString(): String
    Definition Classes
    Identifiable → AnyRef → Any
  180. def transform(dataset: Dataset[_]): DataFrame
    Definition Classes
    OrthoForestDMLModel → Transformer
  181. def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" )
  182. def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" ) @varargs()
  183. def transformSchema(schema: StructType): StructType
    Definition Classes
    OrthoForestDMLModel → PipelineStage
  184. def transformSchema(schema: StructType, logging: Boolean): StructType
    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  185. val treatmentCol: Param[String]
    Definition Classes
    HasTreatmentCol
  186. val treatmentModel: EstimatorParam
    Definition Classes
    DoubleMLParams
  187. val treatmentResidualCol: Param[String]
    Definition Classes
    OrthoForestDMLParams
  188. val uid: String
    Definition Classes
    OrthoForestDMLModelSynapseMLLogging → Identifiable
  189. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  190. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  191. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  192. val weightCol: Param[String]

    The name of the weight column

    The name of the weight column

    Definition Classes
    HasWeightCol
  193. def write: MLWriter
    Definition Classes
    ComplexParamsWritable → MLWritable

Inherited from SynapseMLLogging

Inherited from Wrappable

Inherited from DotnetWrappable

Inherited from RWrappable

Inherited from PythonWrappable

Inherited from BaseWrappable

Inherited from ComplexParamsWritable

Inherited from MLWritable

Inherited from OrthoForestDMLParams

Inherited from HasOutputCol

Inherited from HasMinSampleLeaf

Inherited from HasMaxDepth

Inherited from HasNumTrees

Inherited from DoubleMLParams

Inherited from HasParallelismInjected

Inherited from HasParallelism

Inherited from HasWeightCol

Inherited from HasMaxIter

Inherited from HasFeaturesCol

Inherited from HasOutcomeCol

Inherited from HasTreatmentCol

Inherited from Model[OrthoForestDMLModel]

Inherited from Transformer

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

getParam

param

setParam

Ungrouped