Packages

class UnrollBinaryImage extends Transformer with HasInputCol with HasOutputCol with Wrappable with DefaultParamsWritable with SynapseMLLogging

Converts the representation of an m X n pixel image to an m * n vector of Doubles

The input column name is assumed to be "image", the output column name is "<uid>_output"

Linear Supertypes
SynapseMLLogging, DefaultParamsWritable, MLWritable, Wrappable, DotnetWrappable, RWrappable, PythonWrappable, BaseWrappable, HasOutputCol, HasInputCol, Transformer, PipelineStage, Logging, Params, Serializable, Serializable, Identifiable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. UnrollBinaryImage
  2. SynapseMLLogging
  3. DefaultParamsWritable
  4. MLWritable
  5. Wrappable
  6. DotnetWrappable
  7. RWrappable
  8. PythonWrappable
  9. BaseWrappable
  10. HasOutputCol
  11. HasInputCol
  12. Transformer
  13. PipelineStage
  14. Logging
  15. Params
  16. Serializable
  17. Serializable
  18. Identifiable
  19. AnyRef
  20. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new UnrollBinaryImage()
  2. new UnrollBinaryImage(uid: String)

    uid

    The id of the module

Value Members

  1. final def clear(param: Param[_]): UnrollBinaryImage.this.type
    Definition Classes
    Params
  2. def copy(extra: ParamMap): Transformer
    Definition Classes
    UnrollBinaryImage → Transformer → PipelineStage → Params
  3. def dotnetAdditionalMethods: String
    Definition Classes
    DotnetWrappable
  4. def explainParam(param: Param[_]): String
    Definition Classes
    Params
  5. def explainParams(): String
    Definition Classes
    Params
  6. final def extractParamMap(): ParamMap
    Definition Classes
    Params
  7. final def extractParamMap(extra: ParamMap): ParamMap
    Definition Classes
    Params
  8. final def get[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  9. final def getDefault[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  10. def getHeight: Int
  11. def getInputCol: String

    Definition Classes
    HasInputCol
  12. def getNChannels: Int
  13. final def getOrDefault[T](param: Param[T]): T
    Definition Classes
    Params
  14. def getOutputCol: String

    Definition Classes
    HasOutputCol
  15. def getParam(paramName: String): Param[Any]
    Definition Classes
    Params
  16. def getParamInfo(p: Param[_]): ParamInfo[_]
    Definition Classes
    BaseWrappable
  17. def getWidth: Int
  18. final def hasDefault[T](param: Param[T]): Boolean
    Definition Classes
    Params
  19. def hasParam(paramName: String): Boolean
    Definition Classes
    Params
  20. val height: IntParam
  21. val inputCol: Param[String]

    The name of the input column

    The name of the input column

    Definition Classes
    HasInputCol
  22. final def isDefined(param: Param[_]): Boolean
    Definition Classes
    Params
  23. final def isSet(param: Param[_]): Boolean
    Definition Classes
    Params
  24. def logClass(): Unit
    Definition Classes
    SynapseMLLogging
  25. def logFit[T](f: ⇒ T, columns: Int): T
    Definition Classes
    SynapseMLLogging
  26. def logTrain[T](f: ⇒ T, columns: Int): T
    Definition Classes
    SynapseMLLogging
  27. def logTransform[T](f: ⇒ T, columns: Int): T
    Definition Classes
    SynapseMLLogging
  28. def logVerb[T](verb: String, f: ⇒ T, columns: Int = -1): T
    Definition Classes
    SynapseMLLogging
  29. def makeDotnetFile(conf: CodegenConfig): Unit
    Definition Classes
    DotnetWrappable
  30. def makePyFile(conf: CodegenConfig): Unit
    Definition Classes
    PythonWrappable
  31. def makeRFile(conf: CodegenConfig): Unit
    Definition Classes
    RWrappable
  32. val nChannels: IntParam
  33. val outputCol: Param[String]

    The name of the output column

    The name of the output column

    Definition Classes
    HasOutputCol
  34. lazy val params: Array[Param[_]]
    Definition Classes
    Params
  35. def pyAdditionalMethods: String
    Definition Classes
    PythonWrappable
  36. def pyInitFunc(): String
    Definition Classes
    PythonWrappable
  37. def save(path: String): Unit
    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  38. final def set[T](param: Param[T], value: T): UnrollBinaryImage.this.type
    Definition Classes
    Params
  39. def setHeight(v: Int): UnrollBinaryImage.this.type
  40. def setInputCol(value: String): UnrollBinaryImage.this.type

    Definition Classes
    HasInputCol
  41. def setNChannels(v: Int): UnrollBinaryImage.this.type
  42. def setOutputCol(value: String): UnrollBinaryImage.this.type

    Definition Classes
    HasOutputCol
  43. def setWidth(v: Int): UnrollBinaryImage.this.type
  44. def toString(): String
    Definition Classes
    Identifiable → AnyRef → Any
  45. def transform(dataset: Dataset[_]): DataFrame
    Definition Classes
    UnrollBinaryImage → Transformer
  46. def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" )
  47. def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" ) @varargs()
  48. def transformSchema(schema: StructType): StructType
    Definition Classes
    UnrollBinaryImage → PipelineStage
  49. val uid: String
    Definition Classes
    UnrollBinaryImageSynapseMLLogging → Identifiable
  50. val width: IntParam
  51. def write: MLWriter
    Definition Classes
    DefaultParamsWritable → MLWritable