case class ExecutionParams(chunkSize: Int, matrixType: String, numThreads: Int, dataTransferMode: String, samplingMode: String, samplingSetSize: Int, microBatchSize: Int, useSingleDatasetMode: Boolean, maxStreamingOMPThreads: Int) extends ParamGroup with Product with Serializable
Defines parameters related to lightgbm execution in spark.
- chunkSize
Advanced parameter to specify the chunk size for copying Java data to native.
- matrixType
Advanced parameter to specify whether the native lightgbm matrix constructed should be sparse or dense.
- numThreads
The number of threads to run the native lightgbm training with on each worker.
- dataTransferMode
How to transfer data to LightGBM to begin the processing.
- samplingMode
How to sample data.
- samplingSetSize
The size of the subset if sampling only a subset.
- microBatchSize
The number of elements in a streaming micro-batch.
- useSingleDatasetMode
Whether to create only 1 LightGBM Dataset on each worker.
- maxStreamingOMPThreads
Maximum number of streaming mode OpenMP threads per Spark Task thread.
- Alphabetic
- By Inheritance
- ExecutionParams
- Product
- Equals
- ParamGroup
- Serializable
- Serializable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
-
new
ExecutionParams(chunkSize: Int, matrixType: String, numThreads: Int, dataTransferMode: String, samplingMode: String, samplingSetSize: Int, microBatchSize: Int, useSingleDatasetMode: Boolean, maxStreamingOMPThreads: Int)
- chunkSize
Advanced parameter to specify the chunk size for copying Java data to native.
- matrixType
Advanced parameter to specify whether the native lightgbm matrix constructed should be sparse or dense.
- numThreads
The number of threads to run the native lightgbm training with on each worker.
- dataTransferMode
How to transfer data to LightGBM to begin the processing.
- samplingMode
How to sample data.
- samplingSetSize
The size of the subset if sampling only a subset.
- microBatchSize
The number of elements in a streaming micro-batch.
- useSingleDatasetMode
Whether to create only 1 LightGBM Dataset on each worker.
- maxStreamingOMPThreads
Maximum number of streaming mode OpenMP threads per Spark Task thread.
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
appendParams(sb: ParamsStringBuilder): ParamsStringBuilder
- Definition Classes
- ExecutionParams → ParamGroup
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
- val chunkSize: Int
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
- val dataTransferMode: String
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- val matrixType: String
- val maxStreamingOMPThreads: Int
- val microBatchSize: Int
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
- val numThreads: Int
- val samplingMode: String
- val samplingSetSize: Int
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- ParamGroup → AnyRef → Any
- val useSingleDatasetMode: Boolean
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()