object DatasetUtils
Linear Supertypes
Ordering
- Alphabetic
- By Inheritance
Inherited
- DatasetUtils
- AnyRef
- Any
- Hide All
- Show All
Visibility
- Public
- All
Type Members
- case class CardinalityTriplet[T](groupCounts: List[Int], currentValue: T, currentCount: Int) extends Product with Serializable
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
- def countCardinality[T](input: Seq[T]): Array[Int]
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
def
getArrayType(rowsIter: Iterator[Row], matrixType: String, featuresColumn: String): (Iterator[Row], Boolean)
Get whether to use dense or sparse data, using configuration and/or data sampling.
Get whether to use dense or sparse data, using configuration and/or data sampling.
- rowsIter
Iterator of rows.
- matrixType
Matrix type as configured by user..
- featuresColumn
The name of the features column.
- returns
A reconstructed iterator with the same original rows and whether the matrix should be sparse or dense.
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
- def getRowAsDoubleArray(row: Row, columnParams: ColumnParams): Array[Double]
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
sampleRowsForArrayType(rowsIter: Iterator[Row], featuresColumn: String): (Iterator[Row], Boolean)
Sample the first several rows to determine whether to construct sparse or dense matrix in lightgbm native code.
Sample the first several rows to determine whether to construct sparse or dense matrix in lightgbm native code.
- rowsIter
Iterator of rows.
- featuresColumn
The name of the features column.
- returns
A reconstructed iterator with the same original rows and whether the matrix should be sparse or dense.
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
- def validateGroupColumn(col: String, schema: StructType): Unit
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()