abstract class BaseRegressor[F, R <: Regressor[F, R, M], M <: RegressionModel[F, M]] extends Regressor[F, R, M]
Temporary hack to expose private Regressor class in SparkML as a developer API
Linear Supertypes
Known Subclasses
Ordering
- Alphabetic
- By Inheritance
Inherited
- BaseRegressor
- Regressor
- Predictor
- PredictorParams
- HasPredictionCol
- HasFeaturesCol
- HasLabelCol
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
Visibility
- Public
- All
Instance Constructors
- new BaseRegressor()
Abstract Value Members
Concrete Value Members
-
final
def
clear(param: Param[_]): BaseRegressor.this.type
- Definition Classes
- Params
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
final
val
featuresCol: Param[String]
- Definition Classes
- HasFeaturesCol
-
def
fit(dataset: Dataset[_]): M
- Definition Classes
- Predictor → Estimator
-
def
fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[M]
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], paramMap: ParamMap): M
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): M
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" ) @varargs()
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
final
def
getFeaturesCol: String
- Definition Classes
- HasFeaturesCol
-
final
def
getLabelCol: String
- Definition Classes
- HasLabelCol
-
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
-
final
def
getPredictionCol: String
- Definition Classes
- HasPredictionCol
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
val
labelCol: Param[String]
- Definition Classes
- HasLabelCol
-
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
final
val
predictionCol: Param[String]
- Definition Classes
- HasPredictionCol
-
final
def
set[T](param: Param[T], value: T): BaseRegressor.this.type
- Definition Classes
- Params
-
def
setFeaturesCol(value: String): R
- Definition Classes
- Predictor
-
def
setLabelCol(value: String): R
- Definition Classes
- Predictor
-
def
setPredictionCol(value: String): R
- Definition Classes
- Predictor
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
def
transformSchema(schema: StructType): StructType
- Definition Classes
- Predictor → PipelineStage