abstract class RegressionBase extends AnyRef
The RegressionBase class centers and rescales the input matrix and output vector to support fitting intercept and specifying sampleWeights. The underlying regression algorithm does not need to support fitting intercept and sample weights.
- Alphabetic
- By Inheritance
- RegressionBase
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
- new RegressionBase()
Abstract Value Members
Concrete Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
computeLoss(coefficients: DenseVector[Double], intercept: Double)(x: DenseMatrix[Double], y: DenseVector[Double], sampleWeights: DenseVector[Double]): Double
- Attributes
- protected
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
- def fit(data: Matrix[Double], outputs: Vector[Double], sampleWeights: Vector[Double], fitIntercept: Boolean): RegressionResult
- def fit(data: Matrix[Double], outputs: Vector[Double], fitIntercept: Boolean): RegressionResult
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
implicit
lazy val
sumImpl: breeze.linalg.sum.Impl[BroadcastedColumns[DenseMatrix[Double], DenseVector[Double]], Transpose[DenseVector[Double]]]
Provides an implementation for sum operation of BroadcastedColumns in breeze.
Provides an implementation for sum operation of BroadcastedColumns in breeze. Spark 3.0.* and 3.1.* depends on breeze 1.0 and Spark 3.2.* depends on breeze 1.2, and there is a breaking change in the way the implicit sum implementation is provided. In breeze 1.0, the implementation is constructed via
sum.vectorizeCols_Double(ClassTag[Double], Zero.DoubleZero, sum.helper_Double)
, while in breeze 1.2, it's constructed viasum.vectorizeCols_Double(sum.helper_Double)
If our code is compiled against Spark 3.2.0/breeze 1.0, the scala compiler implicitly constructs the implementation viasum.vectorizeCols_Double(ClassTag[Double], Zero.DoubleZero, sum.helper_Double)
, which does not exist in breeze 1.2, thus causingjava.lang.NoSuchMethodError
when running on Spark 3.2.0. Conversely, if our code is compiled against Spark 3.2.0/breeze 1.2, it will causejava.lang.NoSuchMethodError
when running on Spark 3.0.* and 3.1.*. Workaround: use reflection to construct the implementation. -
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()