Packages

class TabularLIMEModel extends Model[TabularLIMEModel] with LIMEBase with Wrappable with BasicLogging

Annotations
@deprecated
Deprecated

(Since version 1.0.0-rc3) Please use 'com.microsoft.azure.synapse.ml.explainers.VectorLIME'.

Linear Supertypes
BasicLogging, Wrappable, RWrappable, PythonWrappable, BaseWrappable, LIMEBase, ComplexParamsWritable, MLWritable, LIMEParams, HasPredictionCol, HasOutputCol, HasInputCol, Model[TabularLIMEModel], Transformer, PipelineStage, Logging, Params, Serializable, Serializable, Identifiable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. TabularLIMEModel
  2. BasicLogging
  3. Wrappable
  4. RWrappable
  5. PythonWrappable
  6. BaseWrappable
  7. LIMEBase
  8. ComplexParamsWritable
  9. MLWritable
  10. LIMEParams
  11. HasPredictionCol
  12. HasOutputCol
  13. HasInputCol
  14. Model
  15. Transformer
  16. PipelineStage
  17. Logging
  18. Params
  19. Serializable
  20. Serializable
  21. Identifiable
  22. AnyRef
  23. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new TabularLIMEModel()
  2. new TabularLIMEModel(uid: String)

Value Members

  1. final def clear(param: Param[_]): TabularLIMEModel.this.type
    Definition Classes
    Params
  2. val columnSTDs: DoubleArrayParam
  3. def copy(extra: ParamMap): TabularLIMEModel
    Definition Classes
    TabularLIMEModel → Model → Transformer → PipelineStage → Params
  4. def explainParam(param: Param[_]): String
    Definition Classes
    Params
  5. def explainParams(): String
    Definition Classes
    Params
  6. final def extractParamMap(): ParamMap
    Definition Classes
    Params
  7. final def extractParamMap(extra: ParamMap): ParamMap
    Definition Classes
    Params
  8. final def get[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  9. def getColumnSTDs: Array[Double]
  10. final def getDefault[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  11. def getInputCol: String

    Definition Classes
    HasInputCol
  12. def getModel: Transformer
    Definition Classes
    LIMEParams
  13. def getNSamples: Int
    Definition Classes
    LIMEParams
  14. final def getOrDefault[T](param: Param[T]): T
    Definition Classes
    Params
  15. def getOutputCol: String

    Definition Classes
    HasOutputCol
  16. def getParam(paramName: String): Param[Any]
    Definition Classes
    Params
  17. final def getPredictionCol: String
    Definition Classes
    HasPredictionCol
  18. def getRegularization: Double
    Definition Classes
    LIMEParams
  19. def getSamplingFraction: Double
    Definition Classes
    LIMEParams
  20. final def hasDefault[T](param: Param[T]): Boolean
    Definition Classes
    Params
  21. def hasParam(paramName: String): Boolean
    Definition Classes
    Params
  22. def hasParent: Boolean
    Definition Classes
    Model
  23. val inputCol: Param[String]

    The name of the input column

    The name of the input column

    Definition Classes
    HasInputCol
  24. final def isDefined(param: Param[_]): Boolean
    Definition Classes
    Params
  25. final def isSet(param: Param[_]): Boolean
    Definition Classes
    Params
  26. def logClass(): Unit
    Definition Classes
    BasicLogging
  27. def logFit[T](f: ⇒ T): T
    Definition Classes
    BasicLogging
  28. def logPredict[T](f: ⇒ T): T
    Definition Classes
    BasicLogging
  29. def logTrain[T](f: ⇒ T): T
    Definition Classes
    BasicLogging
  30. def logTransform[T](f: ⇒ T): T
    Definition Classes
    BasicLogging
  31. def logVerb[T](verb: String, f: ⇒ T): T
    Definition Classes
    BasicLogging
  32. def makePyFile(conf: CodegenConfig): Unit
    Definition Classes
    PythonWrappable
  33. def makeRFile(conf: CodegenConfig): Unit
    Definition Classes
    RWrappable
  34. val model: TransformerParam
    Definition Classes
    LIMEParams
  35. val nSamples: IntParam
    Definition Classes
    LIMEParams
  36. val outputCol: Param[String]

    The name of the output column

    The name of the output column

    Definition Classes
    HasOutputCol
  37. lazy val params: Array[Param[_]]
    Definition Classes
    Params
  38. var parent: Estimator[TabularLIMEModel]
    Definition Classes
    Model
  39. final val predictionCol: Param[String]
    Definition Classes
    HasPredictionCol
  40. def pyAdditionalMethods: String
    Definition Classes
    PythonWrappable
  41. def pyInitFunc(): String
    Definition Classes
    PythonWrappable
  42. val regularization: DoubleParam
    Definition Classes
    LIMEParams
  43. val samplingFraction: DoubleParam
    Definition Classes
    LIMEParams
  44. def save(path: String): Unit
    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  45. final def set[T](param: Param[T], value: T): TabularLIMEModel.this.type
    Definition Classes
    Params
  46. def setColumnSTDs(v: Array[Double]): TabularLIMEModel.this.type
  47. def setInputCol(value: String): TabularLIMEModel.this.type

    Definition Classes
    HasInputCol
  48. def setModel(v: Transformer): TabularLIMEModel.this.type
    Definition Classes
    LIMEParams
  49. def setNSamples(v: Int): TabularLIMEModel.this.type
    Definition Classes
    LIMEParams
  50. def setOutputCol(value: String): TabularLIMEModel.this.type

    Definition Classes
    HasOutputCol
  51. def setParent(parent: Estimator[TabularLIMEModel]): TabularLIMEModel
    Definition Classes
    Model
  52. def setPredictionCol(v: String): TabularLIMEModel.this.type
    Definition Classes
    LIMEParams
  53. def setRegularization(v: Double): TabularLIMEModel.this.type
    Definition Classes
    LIMEParams
  54. def setSamplingFraction(d: Double): TabularLIMEModel.this.type
    Definition Classes
    LIMEParams
  55. def toString(): String
    Definition Classes
    Identifiable → AnyRef → Any
  56. def transform(dataset: Dataset[_]): DataFrame
    Definition Classes
    TabularLIMEModel → Transformer
  57. def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" )
  58. def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" ) @varargs()
  59. def transformSchema(schema: StructType): StructType
    Definition Classes
    TabularLIMEModel → PipelineStage
  60. val uid: String
    Definition Classes
    TabularLIMEModelBasicLogging → Identifiable
  61. val ver: String
    Definition Classes
    BasicLogging
  62. def write: MLWriter
    Definition Classes
    ComplexParamsWritable → MLWritable