Packages

class KNN extends Estimator[KNNModel] with KNNParams with DefaultParamsWritable with OptimizedKNNFitting with BasicLogging

Linear Supertypes
OptimizedKNNFitting, BasicLogging, DefaultParamsWritable, MLWritable, KNNParams, HasOutputCol, Wrappable, RWrappable, PythonWrappable, BaseWrappable, HasFeaturesCol, Estimator[KNNModel], PipelineStage, Logging, Params, Serializable, Serializable, Identifiable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. KNN
  2. OptimizedKNNFitting
  3. BasicLogging
  4. DefaultParamsWritable
  5. MLWritable
  6. KNNParams
  7. HasOutputCol
  8. Wrappable
  9. RWrappable
  10. PythonWrappable
  11. BaseWrappable
  12. HasFeaturesCol
  13. Estimator
  14. PipelineStage
  15. Logging
  16. Params
  17. Serializable
  18. Serializable
  19. Identifiable
  20. AnyRef
  21. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new KNN()
  2. new KNN(uid: String)

Value Members

  1. final def clear(param: Param[_]): KNN.this.type
    Definition Classes
    Params
  2. def copy(extra: ParamMap): Estimator[KNNModel]
    Definition Classes
    KNN → Estimator → PipelineStage → Params
  3. def explainParam(param: Param[_]): String
    Definition Classes
    Params
  4. def explainParams(): String
    Definition Classes
    Params
  5. final def extractParamMap(): ParamMap
    Definition Classes
    Params
  6. final def extractParamMap(extra: ParamMap): ParamMap
    Definition Classes
    Params
  7. val featuresCol: Param[String]

    The name of the features column

    The name of the features column

    Definition Classes
    HasFeaturesCol
  8. def fit(dataset: Dataset[_]): KNNModel
    Definition Classes
    KNN → Estimator
  9. def fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[KNNModel]
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  10. def fit(dataset: Dataset[_], paramMap: ParamMap): KNNModel
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  11. def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): KNNModel
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" ) @varargs()
  12. final def get[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  13. final def getDefault[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  14. def getFeaturesCol: String

    Definition Classes
    HasFeaturesCol
  15. def getK: Int
    Definition Classes
    KNNParams
  16. def getLeafSize: Int
    Definition Classes
    KNNParams
  17. final def getOrDefault[T](param: Param[T]): T
    Definition Classes
    Params
  18. def getOutputCol: String

    Definition Classes
    HasOutputCol
  19. def getParam(paramName: String): Param[Any]
    Definition Classes
    Params
  20. def getValuesCol: String
    Definition Classes
    KNNParams
  21. final def hasDefault[T](param: Param[T]): Boolean
    Definition Classes
    Params
  22. def hasParam(paramName: String): Boolean
    Definition Classes
    Params
  23. final def isDefined(param: Param[_]): Boolean
    Definition Classes
    Params
  24. final def isSet(param: Param[_]): Boolean
    Definition Classes
    Params
  25. val k: IntParam
    Definition Classes
    KNNParams
  26. val leafSize: IntParam
    Definition Classes
    KNNParams
  27. def logClass(): Unit
    Definition Classes
    BasicLogging
  28. def logFit[T](f: ⇒ T): T
    Definition Classes
    BasicLogging
  29. def logPredict[T](f: ⇒ T): T
    Definition Classes
    BasicLogging
  30. def logTrain[T](f: ⇒ T): T
    Definition Classes
    BasicLogging
  31. def logTransform[T](f: ⇒ T): T
    Definition Classes
    BasicLogging
  32. def logVerb[T](verb: String, f: ⇒ T): T
    Definition Classes
    BasicLogging
  33. def makePyFile(conf: CodegenConfig): Unit
    Definition Classes
    PythonWrappable
  34. def makeRFile(conf: CodegenConfig): Unit
    Definition Classes
    RWrappable
  35. val outputCol: Param[String]

    The name of the output column

    The name of the output column

    Definition Classes
    HasOutputCol
  36. lazy val params: Array[Param[_]]
    Definition Classes
    Params
  37. def pyAdditionalMethods: String
    Definition Classes
    PythonWrappable
  38. def pyInitFunc(): String
    Definition Classes
    PythonWrappable
  39. def save(path: String): Unit
    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  40. final def set[T](param: Param[T], value: T): KNN.this.type
    Definition Classes
    Params
  41. def setFeaturesCol(value: String): KNN.this.type

    Definition Classes
    HasFeaturesCol
  42. def setK(v: Int): KNN.this.type
    Definition Classes
    KNNParams
  43. def setLeafSize(v: Int): KNN.this.type
    Definition Classes
    KNNParams
  44. def setOutputCol(value: String): KNN.this.type

    Definition Classes
    HasOutputCol
  45. def setValuesCol(v: String): KNN.this.type
    Definition Classes
    KNNParams
  46. def toString(): String
    Definition Classes
    Identifiable → AnyRef → Any
  47. def transformSchema(schema: StructType): StructType
    Definition Classes
    KNN → PipelineStage
  48. val uid: String
    Definition Classes
    KNNBasicLogging → Identifiable
  49. val valuesCol: Param[String]
    Definition Classes
    KNNParams
  50. val ver: String
    Definition Classes
    BasicLogging
  51. def write: MLWriter
    Definition Classes
    DefaultParamsWritable → MLWritable