Class

com.microsoft.ml.spark.lightgbm

RegressorTrainParams

Related Doc: package lightgbm

Permalink

case class RegressorTrainParams(parallelism: String, numIterations: Int, learningRate: Double, numLeaves: Int, objective: String, alpha: Double, tweedieVariancePower: Double, maxBin: Int, baggingFraction: Double, baggingFreq: Int, baggingSeed: Int, earlyStoppingRound: Int, featureFraction: Double, maxDepth: Int, minSumHessianInLeaf: Double, numMachines: Int, modelString: Option[String], verbosity: Int, categoricalFeatures: Array[Int], boostFromAverage: Boolean, boostingType: String, lambdaL1: Double, lambdaL2: Double, isProvideTrainingMetric: Boolean, metric: String) extends TrainParams with Product with Serializable

Defines the Booster parameters passed to the LightGBM regressor.

Linear Supertypes
Product, Equals, TrainParams, Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. RegressorTrainParams
  2. Product
  3. Equals
  4. TrainParams
  5. Serializable
  6. Serializable
  7. AnyRef
  8. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new RegressorTrainParams(parallelism: String, numIterations: Int, learningRate: Double, numLeaves: Int, objective: String, alpha: Double, tweedieVariancePower: Double, maxBin: Int, baggingFraction: Double, baggingFreq: Int, baggingSeed: Int, earlyStoppingRound: Int, featureFraction: Double, maxDepth: Int, minSumHessianInLeaf: Double, numMachines: Int, modelString: Option[String], verbosity: Int, categoricalFeatures: Array[Int], boostFromAverage: Boolean, boostingType: String, lambdaL1: Double, lambdaL2: Double, isProvideTrainingMetric: Boolean, metric: String)

    Permalink

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. val alpha: Double

    Permalink
  5. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  6. val baggingFraction: Double

    Permalink
    Definition Classes
    RegressorTrainParamsTrainParams
  7. val baggingFreq: Int

    Permalink
    Definition Classes
    RegressorTrainParamsTrainParams
  8. val baggingSeed: Int

    Permalink
    Definition Classes
    RegressorTrainParamsTrainParams
  9. val boostFromAverage: Boolean

    Permalink
  10. val boostingType: String

    Permalink
    Definition Classes
    RegressorTrainParamsTrainParams
  11. val categoricalFeatures: Array[Int]

    Permalink
    Definition Classes
    RegressorTrainParamsTrainParams
  12. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  13. val earlyStoppingRound: Int

    Permalink
    Definition Classes
    RegressorTrainParamsTrainParams
  14. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  15. val featureFraction: Double

    Permalink
    Definition Classes
    RegressorTrainParamsTrainParams
  16. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  17. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  18. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  19. val isProvideTrainingMetric: Boolean

    Permalink
    Definition Classes
    RegressorTrainParamsTrainParams
  20. val lambdaL1: Double

    Permalink
    Definition Classes
    RegressorTrainParamsTrainParams
  21. val lambdaL2: Double

    Permalink
    Definition Classes
    RegressorTrainParamsTrainParams
  22. val learningRate: Double

    Permalink
    Definition Classes
    RegressorTrainParamsTrainParams
  23. val maxBin: Int

    Permalink
    Definition Classes
    RegressorTrainParamsTrainParams
  24. val maxDepth: Int

    Permalink
    Definition Classes
    RegressorTrainParamsTrainParams
  25. val metric: String

    Permalink
    Definition Classes
    RegressorTrainParamsTrainParams
  26. val minSumHessianInLeaf: Double

    Permalink
    Definition Classes
    RegressorTrainParamsTrainParams
  27. val modelString: Option[String]

    Permalink
    Definition Classes
    RegressorTrainParamsTrainParams
  28. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  29. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  30. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  31. val numIterations: Int

    Permalink
    Definition Classes
    RegressorTrainParamsTrainParams
  32. val numLeaves: Int

    Permalink
    Definition Classes
    RegressorTrainParamsTrainParams
  33. val numMachines: Int

    Permalink
    Definition Classes
    RegressorTrainParamsTrainParams
  34. val objective: String

    Permalink
    Definition Classes
    RegressorTrainParamsTrainParams
  35. val parallelism: String

    Permalink
    Definition Classes
    RegressorTrainParamsTrainParams
  36. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  37. def toString(): String

    Permalink
    Definition Classes
    RegressorTrainParamsTrainParams → AnyRef → Any
  38. val tweedieVariancePower: Double

    Permalink
  39. val verbosity: Int

    Permalink
    Definition Classes
    RegressorTrainParamsTrainParams
  40. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  41. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  42. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Product

Inherited from Equals

Inherited from TrainParams

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped