com
.
microsoft
.
ml
.
spark
.
lightgbm
RegressorTrainParams
Related Doc:
package lightgbm
case class
RegressorTrainParams
(
parallelism:
String
,
numIterations:
Int
,
learningRate:
Double
,
numLeaves:
Int
,
objective:
String
,
alpha:
Double
,
tweedieVariancePower:
Double
,
maxBin:
Int
,
baggingFraction:
Double
,
baggingFreq:
Int
,
baggingSeed:
Int
,
earlyStoppingRound:
Int
,
featureFraction:
Double
,
maxDepth:
Int
,
minSumHessianInLeaf:
Double
,
numMachines:
Int
,
modelString:
Option
[
String
]
,
verbosity:
Int
,
categoricalFeatures:
Array
[
Int
]
,
boostFromAverage:
Boolean
,
boostingType:
String
,
lambdaL1:
Double
,
lambdaL2:
Double
,
isProvideTrainingMetric:
Boolean
,
metric:
String
)
extends
TrainParams
with
Product
with
Serializable
Defines the Booster parameters passed to the LightGBM regressor.
Linear Supertypes
Product
,
Equals
,
TrainParams
,
Serializable
,
Serializable
,
AnyRef
,
Any
Ordering
Alphabetic
By Inheritance
Inherited
RegressorTrainParams
Product
Equals
TrainParams
Serializable
Serializable
AnyRef
Any
Hide All
Show All
Visibility
Public
All
Instance Constructors
new
RegressorTrainParams
(
parallelism:
String
,
numIterations:
Int
,
learningRate:
Double
,
numLeaves:
Int
,
objective:
String
,
alpha:
Double
,
tweedieVariancePower:
Double
,
maxBin:
Int
,
baggingFraction:
Double
,
baggingFreq:
Int
,
baggingSeed:
Int
,
earlyStoppingRound:
Int
,
featureFraction:
Double
,
maxDepth:
Int
,
minSumHessianInLeaf:
Double
,
numMachines:
Int
,
modelString:
Option
[
String
]
,
verbosity:
Int
,
categoricalFeatures:
Array
[
Int
]
,
boostFromAverage:
Boolean
,
boostingType:
String
,
lambdaL1:
Double
,
lambdaL2:
Double
,
isProvideTrainingMetric:
Boolean
,
metric:
String
)
Value Members
final
def
!=
(
arg0:
Any
)
:
Boolean
Definition Classes
AnyRef → Any
final
def
##
()
:
Int
Definition Classes
AnyRef → Any
final
def
==
(
arg0:
Any
)
:
Boolean
Definition Classes
AnyRef → Any
val
alpha
:
Double
final
def
asInstanceOf
[
T0
]
:
T0
Definition Classes
Any
val
baggingFraction
:
Double
Definition Classes
RegressorTrainParams
→
TrainParams
val
baggingFreq
:
Int
Definition Classes
RegressorTrainParams
→
TrainParams
val
baggingSeed
:
Int
Definition Classes
RegressorTrainParams
→
TrainParams
val
boostFromAverage
:
Boolean
val
boostingType
:
String
Definition Classes
RegressorTrainParams
→
TrainParams
val
categoricalFeatures
:
Array
[
Int
]
Definition Classes
RegressorTrainParams
→
TrainParams
def
clone
()
:
AnyRef
Attributes
protected[
java.lang
]
Definition Classes
AnyRef
Annotations
@throws
(
...
)
val
earlyStoppingRound
:
Int
Definition Classes
RegressorTrainParams
→
TrainParams
final
def
eq
(
arg0:
AnyRef
)
:
Boolean
Definition Classes
AnyRef
val
featureFraction
:
Double
Definition Classes
RegressorTrainParams
→
TrainParams
def
finalize
()
:
Unit
Attributes
protected[
java.lang
]
Definition Classes
AnyRef
Annotations
@throws
(
classOf[java.lang.Throwable]
)
final
def
getClass
()
:
Class
[_]
Definition Classes
AnyRef → Any
final
def
isInstanceOf
[
T0
]
:
Boolean
Definition Classes
Any
val
isProvideTrainingMetric
:
Boolean
Definition Classes
RegressorTrainParams
→
TrainParams
val
lambdaL1
:
Double
Definition Classes
RegressorTrainParams
→
TrainParams
val
lambdaL2
:
Double
Definition Classes
RegressorTrainParams
→
TrainParams
val
learningRate
:
Double
Definition Classes
RegressorTrainParams
→
TrainParams
val
maxBin
:
Int
Definition Classes
RegressorTrainParams
→
TrainParams
val
maxDepth
:
Int
Definition Classes
RegressorTrainParams
→
TrainParams
val
metric
:
String
Definition Classes
RegressorTrainParams
→
TrainParams
val
minSumHessianInLeaf
:
Double
Definition Classes
RegressorTrainParams
→
TrainParams
val
modelString
:
Option
[
String
]
Definition Classes
RegressorTrainParams
→
TrainParams
final
def
ne
(
arg0:
AnyRef
)
:
Boolean
Definition Classes
AnyRef
final
def
notify
()
:
Unit
Definition Classes
AnyRef
final
def
notifyAll
()
:
Unit
Definition Classes
AnyRef
val
numIterations
:
Int
Definition Classes
RegressorTrainParams
→
TrainParams
val
numLeaves
:
Int
Definition Classes
RegressorTrainParams
→
TrainParams
val
numMachines
:
Int
Definition Classes
RegressorTrainParams
→
TrainParams
val
objective
:
String
Definition Classes
RegressorTrainParams
→
TrainParams
val
parallelism
:
String
Definition Classes
RegressorTrainParams
→
TrainParams
final
def
synchronized
[
T0
]
(
arg0: ⇒
T0
)
:
T0
Definition Classes
AnyRef
def
toString
()
:
String
Definition Classes
RegressorTrainParams
→
TrainParams
→ AnyRef → Any
val
tweedieVariancePower
:
Double
val
verbosity
:
Int
Definition Classes
RegressorTrainParams
→
TrainParams
final
def
wait
()
:
Unit
Definition Classes
AnyRef
Annotations
@throws
(
...
)
final
def
wait
(
arg0:
Long
,
arg1:
Int
)
:
Unit
Definition Classes
AnyRef
Annotations
@throws
(
...
)
final
def
wait
(
arg0:
Long
)
:
Unit
Definition Classes
AnyRef
Annotations
@throws
(
...
)
Inherited from
Product
Inherited from
Equals
Inherited from
TrainParams
Inherited from
Serializable
Inherited from
Serializable
Inherited from
AnyRef
Inherited from
Any
Ungrouped
Defines the Booster parameters passed to the LightGBM regressor.