Package

com.microsoft.ml.spark

lightgbm

Permalink

package lightgbm

Visibility
  1. Public
  2. All

Type Members

  1. case class ClassifierTrainParams(parallelism: String, numIterations: Int, learningRate: Double, numLeaves: Int, maxBin: Int, baggingFraction: Double, baggingFreq: Int, baggingSeed: Int, earlyStoppingRound: Int, featureFraction: Double, maxDepth: Int, minSumHessianInLeaf: Double, numMachines: Int, objective: String, modelString: Option[String], isUnbalance: Boolean, verbosity: Int, categoricalFeatures: Array[Int], numClass: Int, boostFromAverage: Boolean, boostingType: String, lambdaL1: Double, lambdaL2: Double, isProvideTrainingMetric: Boolean, metric: String) extends TrainParams with Product with Serializable

    Permalink

    Defines the Booster parameters passed to the LightGBM classifier.

  2. trait HasFeatureImportanceGetters extends AnyRef

    Permalink
  3. trait LightGBMBase[TrainedModel <: Model[TrainedModel]] extends Estimator[TrainedModel] with LightGBMParams with HasFeaturesCol with HasLabelCol

    Permalink
  4. class LightGBMBooster extends Serializable

    Permalink

    Represents a LightGBM Booster learner

    Represents a LightGBM Booster learner

    Annotations
    @SerialVersionUID()
  5. class LightGBMClassificationModel extends ProbabilisticClassificationModel[Vector, LightGBMClassificationModel] with HasFeatureImportanceGetters with ConstructorWritable[LightGBMClassificationModel]

    Permalink

    Model produced by LightGBMClassifier.

    Model produced by LightGBMClassifier.

    Annotations
    @InternalWrapper()
  6. class LightGBMClassifier extends ProbabilisticClassifier[Vector, LightGBMClassifier, LightGBMClassificationModel] with LightGBMBase[LightGBMClassificationModel]

    Permalink

    Trains a LightGBM Classification model, a fast, distributed, high performance gradient boosting framework based on decision tree algorithms.

    Trains a LightGBM Classification model, a fast, distributed, high performance gradient boosting framework based on decision tree algorithms. For more information please see here: https://github.com/Microsoft/LightGBM. For parameter information see here: https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst

    Annotations
    @InternalWrapper()
  7. class LightGBMDataset extends AutoCloseable

    Permalink

    Represents a LightGBM dataset.

    Represents a LightGBM dataset. Wraps the native implementation.

  8. trait LightGBMExecutionParams extends Wrappable

    Permalink

    Defines common LightGBM execution parameters.

  9. trait LightGBMParams extends Wrappable with DefaultParamsWritable with HasWeightCol with HasValidationIndicatorCol with HasInitScoreCol with LightGBMExecutionParams

    Permalink

    Defines common parameters across all LightGBM learners.

  10. class LightGBMRanker extends Ranker[Vector, LightGBMRanker, LightGBMRankerModel] with LightGBMBase[LightGBMRankerModel]

    Permalink

    Trains a LightGBMRanker model, a fast, distributed, high performance gradient boosting framework based on decision tree algorithms.

    Trains a LightGBMRanker model, a fast, distributed, high performance gradient boosting framework based on decision tree algorithms. For more information please see here: https://github.com/Microsoft/LightGBM. For parameter information see here: https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst

    Annotations
    @InternalWrapper()
  11. class LightGBMRankerModel extends RankerModel[Vector, LightGBMRankerModel] with ConstructorWritable[LightGBMRankerModel]

    Permalink

    Model produced by LightGBMRanker.

    Model produced by LightGBMRanker.

    Annotations
    @InternalWrapper()
  12. class LightGBMRegressionModel extends RegressionModel[Vector, LightGBMRegressionModel] with HasFeatureImportanceGetters with ConstructorWritable[LightGBMRegressionModel]

    Permalink

    Model produced by LightGBMRegressor.

    Model produced by LightGBMRegressor.

    Annotations
    @InternalWrapper()
  13. class LightGBMRegressor extends BaseRegressor[Vector, LightGBMRegressor, LightGBMRegressionModel] with LightGBMBase[LightGBMRegressionModel]

    Permalink

    Trains a LightGBM Regression model, a fast, distributed, high performance gradient boosting framework based on decision tree algorithms.

    Trains a LightGBM Regression model, a fast, distributed, high performance gradient boosting framework based on decision tree algorithms. For more information please see here: https://github.com/Microsoft/LightGBM. For parameter information see here: https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst Note: The application parameter supports the following values:

    • regression_l2, L2 loss, alias=regression, mean_squared_error, mse, l2_root, root_mean_squared_error, rmse
    • regression_l1, L1 loss, alias=mean_absolute_error, mae
    • huber, Huber loss
    • fair, Fair loss
    • poisson, Poisson regression
    • quantile, Quantile regression
    • mape, MAPE loss, alias=mean_absolute_percentage_error
    • gamma, Gamma regression with log-link. It might be useful, e.g., for modeling insurance claims severity, or for any target that might be gamma-distributed
    • tweedie, Tweedie regression with log-link. It might be useful, e.g., for modeling total loss in insurance, or for any target that might be tweedie-distributed
    Annotations
    @InternalWrapper()
  14. case class NetworkParams(defaultListenPort: Int, addr: String, port: Int, barrierExecutionMode: Boolean) extends Product with Serializable

    Permalink
  15. case class RankerTrainParams(parallelism: String, numIterations: Int, learningRate: Double, numLeaves: Int, objective: String, maxBin: Int, baggingFraction: Double, baggingFreq: Int, baggingSeed: Int, earlyStoppingRound: Int, featureFraction: Double, maxDepth: Int, minSumHessianInLeaf: Double, numMachines: Int, modelString: Option[String], verbosity: Int, categoricalFeatures: Array[Int], boostingType: String, lambdaL1: Double, lambdaL2: Double, maxPosition: Int, labelGain: Array[Double], isProvideTrainingMetric: Boolean, metric: String, evalAt: Array[Int]) extends TrainParams with Product with Serializable

    Permalink

    Defines the Booster parameters passed to the LightGBM ranker.

  16. case class RegressorTrainParams(parallelism: String, numIterations: Int, learningRate: Double, numLeaves: Int, objective: String, alpha: Double, tweedieVariancePower: Double, maxBin: Int, baggingFraction: Double, baggingFreq: Int, baggingSeed: Int, earlyStoppingRound: Int, featureFraction: Double, maxDepth: Int, minSumHessianInLeaf: Double, numMachines: Int, modelString: Option[String], verbosity: Int, categoricalFeatures: Array[Int], boostFromAverage: Boolean, boostingType: String, lambdaL1: Double, lambdaL2: Double, isProvideTrainingMetric: Boolean, metric: String) extends TrainParams with Product with Serializable

    Permalink

    Defines the Booster parameters passed to the LightGBM regressor.

  17. abstract class TrainParams extends Serializable

    Permalink

    Defines the common Booster parameters passed to the LightGBM learners.

Value Members

  1. object LightGBMClassificationModel extends ConstructorReadable[LightGBMClassificationModel] with Serializable

    Permalink
  2. object LightGBMClassifier extends DefaultParamsReadable[LightGBMClassifier] with Serializable

    Permalink
  3. object LightGBMConstants

    Permalink
  4. object LightGBMRanker extends DefaultParamsReadable[LightGBMRanker] with Serializable

    Permalink
  5. object LightGBMRankerModel extends ConstructorReadable[LightGBMRankerModel] with Serializable

    Permalink
  6. object LightGBMRegressionModel extends ConstructorReadable[LightGBMRegressionModel] with Serializable

    Permalink
  7. object LightGBMRegressor extends DefaultParamsReadable[LightGBMRegressor] with Serializable

    Permalink
  8. object LightGBMUtils

    Permalink

    Helper utilities for LightGBM learners

Ungrouped