Synapseml  1.0.1
Public Member Functions | Static Public Member Functions | List of all members
Synapse.ML.Explainers.ICETransformer Class Reference

ICETransformer implements ICETransformer More...

Inheritance diagram for Synapse.ML.Explainers.ICETransformer:
Inheritance graph
[legend]
Collaboration diagram for Synapse.ML.Explainers.ICETransformer:
Collaboration graph
[legend]

Public Member Functions

 ICETransformer ()
 Creates a ICETransformer without any parameters. More...
 
 ICETransformer (string uid)
 Creates a ICETransformer with a UID that is used to give the ICETransformer a unique ID. More...
 
ICETransformer SetCategoricalFeatures (ICECategoricalFeature[] value)
 Sets value for categoricalFeatures More...
 
ICETransformer SetDependenceNameCol (string value)
 Sets value for dependenceNameCol More...
 
ICETransformer SetFeatureNameCol (string value)
 Sets value for featureNameCol More...
 
ICETransformer SetKind (string value)
 Sets value for kind More...
 
ICETransformer SetModel (JavaTransformer value)
 Sets value for model More...
 
ICETransformer SetNumSamples (int value)
 Sets value for numSamples More...
 
ICETransformer SetNumericFeatures (ICENumericFeature[] value)
 Sets value for numericFeatures More...
 
ICETransformer SetTargetClasses (int[] value)
 Sets value for targetClasses More...
 
ICETransformer SetTargetClassesCol (string value)
 Sets value for targetClassesCol More...
 
ICETransformer SetTargetCol (string value)
 Sets value for targetCol More...
 
ICECategoricalFeature[] GetCategoricalFeatures ()
 Gets categoricalFeatures value More...
 
string GetDependenceNameCol ()
 Gets dependenceNameCol value More...
 
string GetFeatureNameCol ()
 Gets featureNameCol value More...
 
string GetKind ()
 Gets kind value More...
 
JavaTransformer GetModel ()
 Gets model value More...
 
int GetNumSamples ()
 Gets numSamples value More...
 
ICENumericFeature[] GetNumericFeatures ()
 Gets numericFeatures value More...
 
int[] GetTargetClasses ()
 Gets targetClasses value More...
 
string GetTargetClassesCol ()
 Gets targetClassesCol value More...
 
string GetTargetCol ()
 Gets targetCol value More...
 
void Save (string path)
 Saves the object so that it can be loaded later using Load. Note that these objects can be shared with Scala by Loading or Saving in Scala. More...
 
JavaMLWriter Write ()
 
Returns
a JavaMLWriter instance for this ML instance.

 
JavaMLReader< ICETransformerRead ()
 Get the corresponding JavaMLReader instance. More...
 

Static Public Member Functions

static ICETransformer Load (string path)
 Loads the ICETransformer that was previously saved using Save(string). More...
 

Detailed Description

ICETransformer implements ICETransformer

Constructor & Destructor Documentation

◆ ICETransformer() [1/2]

Synapse.ML.Explainers.ICETransformer.ICETransformer ( )
inline

Creates a ICETransformer without any parameters.

◆ ICETransformer() [2/2]

Synapse.ML.Explainers.ICETransformer.ICETransformer ( string  uid)
inline

Creates a ICETransformer with a UID that is used to give the ICETransformer a unique ID.

Parameters
uidAn immutable unique ID for the object and its derivatives.

Member Function Documentation

◆ GetCategoricalFeatures()

ICECategoricalFeature [] Synapse.ML.Explainers.ICETransformer.GetCategoricalFeatures ( )

Gets categoricalFeatures value

Returns
categoricalFeatures: The list of categorical features to explain.

◆ GetDependenceNameCol()

string Synapse.ML.Explainers.ICETransformer.GetDependenceNameCol ( )

Gets dependenceNameCol value

Returns
dependenceNameCol: Output column name which corresponds to dependence values of PDP-based-feature-importance option (kind == feature)

◆ GetFeatureNameCol()

string Synapse.ML.Explainers.ICETransformer.GetFeatureNameCol ( )

Gets featureNameCol value

Returns
featureNameCol: Output column name which corresponds to names of the features used in calculation of PDP-based-feature-importance option (kind == feature)

◆ GetKind()

string Synapse.ML.Explainers.ICETransformer.GetKind ( )

Gets kind value

Returns
kind: Whether to return the partial dependence plot (PDP) averaged across all the samples in the dataset or individual feature importance (ICE) per sample. Allowed values are "average" for PDP, "individual" for ICE and "feature" for PDP-based feature importance.

◆ GetModel()

JavaTransformer Synapse.ML.Explainers.ICETransformer.GetModel ( )
inline

Gets model value

Returns
model: The model to be interpreted.

◆ GetNumericFeatures()

ICENumericFeature [] Synapse.ML.Explainers.ICETransformer.GetNumericFeatures ( )

Gets numericFeatures value

Returns
numericFeatures: The list of numeric features to explain.

◆ GetNumSamples()

int Synapse.ML.Explainers.ICETransformer.GetNumSamples ( )

Gets numSamples value

Returns
numSamples: Number of samples to generate.

◆ GetTargetClasses()

int [] Synapse.ML.Explainers.ICETransformer.GetTargetClasses ( )

Gets targetClasses value

Returns
targetClasses: The indices of the classes for multinomial classification models. Default: 0.For regression models this parameter is ignored.

◆ GetTargetClassesCol()

string Synapse.ML.Explainers.ICETransformer.GetTargetClassesCol ( )

Gets targetClassesCol value

Returns
targetClassesCol: The name of the column that specifies the indices of the classes for multinomial classification models.

◆ GetTargetCol()

string Synapse.ML.Explainers.ICETransformer.GetTargetCol ( )

Gets targetCol value

Returns
targetCol: The column name of the prediction target to explain (i.e. the response variable). This is usually set to "prediction" for regression models and "probability" for probabilistic classification models. Default value: probability

◆ Load()

static ICETransformer Synapse.ML.Explainers.ICETransformer.Load ( string  path)
static

Loads the ICETransformer that was previously saved using Save(string).

Parameters
pathThe path the previous ICETransformer was saved to
Returns
New ICETransformer object, loaded from path.

◆ Read()

JavaMLReader<ICETransformer> Synapse.ML.Explainers.ICETransformer.Read ( )

Get the corresponding JavaMLReader instance.

Returns
an JavaMLReader<ICETransformer> instance for this ML instance.

◆ Save()

void Synapse.ML.Explainers.ICETransformer.Save ( string  path)

Saves the object so that it can be loaded later using Load. Note that these objects can be shared with Scala by Loading or Saving in Scala.

Parameters
pathThe path to save the object to

◆ SetCategoricalFeatures()

ICETransformer Synapse.ML.Explainers.ICETransformer.SetCategoricalFeatures ( ICECategoricalFeature[]  value)

Sets value for categoricalFeatures

Parameters
valueThe list of categorical features to explain.
Returns
New ICETransformer object

◆ SetDependenceNameCol()

ICETransformer Synapse.ML.Explainers.ICETransformer.SetDependenceNameCol ( string  value)

Sets value for dependenceNameCol

Parameters
valueOutput column name which corresponds to dependence values of PDP-based-feature-importance option (kind == feature)
Returns
New ICETransformer object

◆ SetFeatureNameCol()

ICETransformer Synapse.ML.Explainers.ICETransformer.SetFeatureNameCol ( string  value)

Sets value for featureNameCol

Parameters
valueOutput column name which corresponds to names of the features used in calculation of PDP-based-feature-importance option (kind == feature)
Returns
New ICETransformer object

◆ SetKind()

ICETransformer Synapse.ML.Explainers.ICETransformer.SetKind ( string  value)

Sets value for kind

Parameters
valueWhether to return the partial dependence plot (PDP) averaged across all the samples in the dataset or individual feature importance (ICE) per sample. Allowed values are "average" for PDP, "individual" for ICE and "feature" for PDP-based feature importance.
Returns
New ICETransformer object

◆ SetModel()

ICETransformer Synapse.ML.Explainers.ICETransformer.SetModel ( JavaTransformer  value)

Sets value for model

Parameters
valueThe model to be interpreted.
Returns
New ICETransformer object

◆ SetNumericFeatures()

ICETransformer Synapse.ML.Explainers.ICETransformer.SetNumericFeatures ( ICENumericFeature[]  value)

Sets value for numericFeatures

Parameters
valueThe list of numeric features to explain.
Returns
New ICETransformer object

◆ SetNumSamples()

ICETransformer Synapse.ML.Explainers.ICETransformer.SetNumSamples ( int  value)

Sets value for numSamples

Parameters
valueNumber of samples to generate.
Returns
New ICETransformer object

◆ SetTargetClasses()

ICETransformer Synapse.ML.Explainers.ICETransformer.SetTargetClasses ( int[]  value)

Sets value for targetClasses

Parameters
valueThe indices of the classes for multinomial classification models. Default: 0.For regression models this parameter is ignored.
Returns
New ICETransformer object

◆ SetTargetClassesCol()

ICETransformer Synapse.ML.Explainers.ICETransformer.SetTargetClassesCol ( string  value)

Sets value for targetClassesCol

Parameters
valueThe name of the column that specifies the indices of the classes for multinomial classification models.
Returns
New ICETransformer object

◆ SetTargetCol()

ICETransformer Synapse.ML.Explainers.ICETransformer.SetTargetCol ( string  value)

Sets value for targetCol

Parameters
valueThe column name of the prediction target to explain (i.e. the response variable). This is usually set to "prediction" for regression models and "probability" for probabilistic classification models. Default value: probability
Returns
New ICETransformer object

The documentation for this class was generated from the following file: