Synapseml  1.0.1
Public Member Functions | Static Public Member Functions | List of all members
Synapse.ML.Featurize.CleanMissingDataModel Class Reference

CleanMissingDataModel implements CleanMissingDataModel More...

Inheritance diagram for Synapse.ML.Featurize.CleanMissingDataModel:
Inheritance graph
[legend]
Collaboration diagram for Synapse.ML.Featurize.CleanMissingDataModel:
Collaboration graph
[legend]

Public Member Functions

 CleanMissingDataModel ()
 Creates a CleanMissingDataModel without any parameters. More...
 
 CleanMissingDataModel (string uid)
 Creates a CleanMissingDataModel with a UID that is used to give the CleanMissingDataModel a unique ID. More...
 
CleanMissingDataModel SetColsToFill (string[] value)
 Sets value for colsToFill More...
 
CleanMissingDataModel SetFillValues (object[] value)
 Sets value for fillValues More...
 
CleanMissingDataModel SetInputCols (string[] value)
 Sets value for inputCols More...
 
CleanMissingDataModel SetOutputCols (string[] value)
 Sets value for outputCols More...
 
string[] GetColsToFill ()
 Gets colsToFill value More...
 
object[] GetFillValues ()
 Gets fillValues value More...
 
string[] GetInputCols ()
 Gets inputCols value More...
 
string[] GetOutputCols ()
 Gets outputCols value More...
 
void Save (string path)
 Saves the object so that it can be loaded later using Load. Note that these objects can be shared with Scala by Loading or Saving in Scala. More...
 
JavaMLWriter Write ()
 
Returns
a JavaMLWriter instance for this ML instance.

 
JavaMLReader< CleanMissingDataModelRead ()
 Get the corresponding JavaMLReader instance. More...
 

Static Public Member Functions

static CleanMissingDataModel Load (string path)
 Loads the CleanMissingDataModel that was previously saved using Save(string). More...
 

Detailed Description

CleanMissingDataModel implements CleanMissingDataModel

Constructor & Destructor Documentation

◆ CleanMissingDataModel() [1/2]

Synapse.ML.Featurize.CleanMissingDataModel.CleanMissingDataModel ( )
inline

Creates a CleanMissingDataModel without any parameters.

◆ CleanMissingDataModel() [2/2]

Synapse.ML.Featurize.CleanMissingDataModel.CleanMissingDataModel ( string  uid)
inline

Creates a CleanMissingDataModel with a UID that is used to give the CleanMissingDataModel a unique ID.

Parameters
uidAn immutable unique ID for the object and its derivatives.

Member Function Documentation

◆ GetColsToFill()

string [] Synapse.ML.Featurize.CleanMissingDataModel.GetColsToFill ( )

Gets colsToFill value

Returns
colsToFill: The columns to fill with

◆ GetFillValues()

object [] Synapse.ML.Featurize.CleanMissingDataModel.GetFillValues ( )
inline

Gets fillValues value

Returns
fillValues: what to replace in the columns

◆ GetInputCols()

string [] Synapse.ML.Featurize.CleanMissingDataModel.GetInputCols ( )

Gets inputCols value

Returns
inputCols: The names of the input columns

◆ GetOutputCols()

string [] Synapse.ML.Featurize.CleanMissingDataModel.GetOutputCols ( )

Gets outputCols value

Returns
outputCols: The names of the output columns

◆ Load()

static CleanMissingDataModel Synapse.ML.Featurize.CleanMissingDataModel.Load ( string  path)
static

Loads the CleanMissingDataModel that was previously saved using Save(string).

Parameters
pathThe path the previous CleanMissingDataModel was saved to
Returns
New CleanMissingDataModel object, loaded from path.

◆ Read()

JavaMLReader<CleanMissingDataModel> Synapse.ML.Featurize.CleanMissingDataModel.Read ( )

Get the corresponding JavaMLReader instance.

Returns
an JavaMLReader<CleanMissingDataModel> instance for this ML instance.

◆ Save()

void Synapse.ML.Featurize.CleanMissingDataModel.Save ( string  path)

Saves the object so that it can be loaded later using Load. Note that these objects can be shared with Scala by Loading or Saving in Scala.

Parameters
pathThe path to save the object to

◆ SetColsToFill()

CleanMissingDataModel Synapse.ML.Featurize.CleanMissingDataModel.SetColsToFill ( string[]  value)

Sets value for colsToFill

Parameters
valueThe columns to fill with
Returns
New CleanMissingDataModel object

◆ SetFillValues()

CleanMissingDataModel Synapse.ML.Featurize.CleanMissingDataModel.SetFillValues ( object[]  value)

Sets value for fillValues

Parameters
valuewhat to replace in the columns
Returns
New CleanMissingDataModel object

◆ SetInputCols()

CleanMissingDataModel Synapse.ML.Featurize.CleanMissingDataModel.SetInputCols ( string[]  value)

Sets value for inputCols

Parameters
valueThe names of the input columns
Returns
New CleanMissingDataModel object

◆ SetOutputCols()

CleanMissingDataModel Synapse.ML.Featurize.CleanMissingDataModel.SetOutputCols ( string[]  value)

Sets value for outputCols

Parameters
valueThe names of the output columns
Returns
New CleanMissingDataModel object

The documentation for this class was generated from the following file: