class ONNXModel extends Transformer with ComplexParamsWritable with ONNXModelParams with Wrappable with SynapseMLLogging
Linear Supertypes
Ordering
- Alphabetic
- By Inheritance
Inherited
- ONNXModel
- SynapseMLLogging
- Wrappable
- DotnetWrappable
- RWrappable
- PythonWrappable
- BaseWrappable
- ONNXModelParams
- HasFeedFetchDicts
- HasMiniBatcher
- ComplexParamsWritable
- MLWritable
- Transformer
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
Visibility
- Public
- All
Value Members
-
val
argMaxDict: StringStringMapParam
- Definition Classes
- ONNXModelParams
-
final
def
clear(param: Param[_]): ONNXModel.this.type
- Definition Classes
- Params
-
def
copy(extra: ParamMap): ONNXModel
- Definition Classes
- ONNXModel → Transformer → PipelineStage → Params
-
val
deviceType: Param[String]
- Definition Classes
- ONNXModelParams
-
def
dotnetAdditionalMethods: String
- Definition Classes
- DotnetWrappable
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
val
feedDict: StringStringMapParam
- Definition Classes
- HasFeedFetchDicts
-
val
fetchDict: StringStringMapParam
- Definition Classes
- HasFeedFetchDicts
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getArgMaxDict: Map[String, String]
- Definition Classes
- ONNXModelParams
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getDeviceType: String
- Definition Classes
- ONNXModelParams
-
def
getFeedDict: Map[String, String]
- Definition Classes
- HasFeedFetchDicts
-
def
getFetchDict: Map[String, String]
- Definition Classes
- HasFeedFetchDicts
-
def
getMiniBatchSize: Int
- Definition Classes
- HasMiniBatcher
-
def
getMiniBatcher: MiniBatchBase
- Definition Classes
- HasMiniBatcher
-
def
getModelPayload: Array[Byte]
- Definition Classes
- ONNXModelParams
-
def
getOptimizationLevel: String
- Definition Classes
- ONNXModelParams
-
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
-
def
getParamInfo(p: Param[_]): ParamInfo[_]
- Definition Classes
- BaseWrappable
-
def
getSoftMaxDict: Map[String, String]
- Definition Classes
- ONNXModelParams
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
def
logClass(featureName: String): Unit
- Definition Classes
- SynapseMLLogging
-
def
logFit[T](f: ⇒ T, columns: Int): T
- Definition Classes
- SynapseMLLogging
-
def
logTransform[T](f: ⇒ T, columns: Int): T
- Definition Classes
- SynapseMLLogging
-
def
logVerb[T](verb: String, f: ⇒ T, columns: Option[Int] = None): T
- Definition Classes
- SynapseMLLogging
-
def
makeDotnetFile(conf: CodegenConfig): Unit
- Definition Classes
- DotnetWrappable
-
def
makePyFile(conf: CodegenConfig): Unit
- Definition Classes
- PythonWrappable
-
def
makeRFile(conf: CodegenConfig): Unit
- Definition Classes
- RWrappable
-
val
miniBatcher: TransformerParam
Size of minibatches.
Size of minibatches. Must be greater than 0; default is 10
- Definition Classes
- HasMiniBatcher
- def modelInput: Map[String, NodeInfo]
- def modelInputJava: Map[String, NodeInfo]
- def modelOutput: Map[String, NodeInfo]
- def modelOutputJava: Map[String, NodeInfo]
-
val
modelPayload: ByteArrayParam
- Definition Classes
- ONNXModelParams
-
val
optimizationLevel: Param[String]
- Definition Classes
- ONNXModelParams
-
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
def
pyAdditionalMethods: String
- Definition Classes
- PythonWrappable
-
def
pyInitFunc(): String
- Definition Classes
- PythonWrappable
- def rebroadcastModelPayload(spark: SparkSession): Broadcast[Array[Byte]]
-
def
save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
final
def
set[T](param: Param[T], value: T): ONNXModel.this.type
- Definition Classes
- Params
-
def
setArgMaxDict(k: String, v: String): ONNXModel.this.type
- Definition Classes
- ONNXModelParams
-
def
setArgMaxDict(value: HashMap[String, String]): ONNXModel.this.type
- Definition Classes
- ONNXModelParams
-
def
setArgMaxDict(value: Map[String, String]): ONNXModel.this.type
- Definition Classes
- ONNXModelParams
-
def
setDeviceType(value: String): ONNXModel.this.type
- Definition Classes
- ONNXModelParams
-
def
setFeedDict(k: String, v: String): ONNXModel.this.type
- Definition Classes
- HasFeedFetchDicts
-
def
setFeedDict(value: HashMap[String, String]): ONNXModel.this.type
- Definition Classes
- HasFeedFetchDicts
-
def
setFeedDict(value: Map[String, String]): ONNXModel.this.type
- Definition Classes
- HasFeedFetchDicts
-
def
setFetchDict(k: String, v: String): ONNXModel.this.type
- Definition Classes
- HasFeedFetchDicts
-
def
setFetchDict(value: HashMap[String, String]): ONNXModel.this.type
- Definition Classes
- HasFeedFetchDicts
-
def
setFetchDict(value: Map[String, String]): ONNXModel.this.type
- Definition Classes
- HasFeedFetchDicts
-
def
setMiniBatchSize(n: Int): ONNXModel.this.type
- Definition Classes
- HasMiniBatcher
-
def
setMiniBatcher(value: MiniBatchBase): ONNXModel.this.type
- Definition Classes
- HasMiniBatcher
- def setModelLocation(path: String): ONNXModel.this.type
- def setModelPayload(value: Array[Byte]): ONNXModel.this.type
-
def
setOptimizationLevel(value: String): ONNXModel.this.type
- Definition Classes
- ONNXModelParams
-
def
setSoftMaxDict(k: String, v: String): ONNXModel.this.type
- Definition Classes
- ONNXModelParams
-
def
setSoftMaxDict(value: HashMap[String, String]): ONNXModel.this.type
- Definition Classes
- ONNXModelParams
-
def
setSoftMaxDict(value: Map[String, String]): ONNXModel.this.type
- Definition Classes
- ONNXModelParams
- def sliceAtOutput(output: String): ONNXModel
- def sliceAtOutputs(outputs: Array[String]): ONNXModel
-
val
softMaxDict: StringStringMapParam
- Definition Classes
- ONNXModelParams
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
def
transform(dataset: Dataset[_]): DataFrame
- Definition Classes
- ONNXModel → Transformer
-
def
transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" )
-
def
transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" ) @varargs()
- def transformInner(dataset: Dataset[_], inputSchema: StructType): DataFrame
-
def
transformSchema(schema: StructType): StructType
- Definition Classes
- ONNXModel → PipelineStage
-
val
uid: String
- Definition Classes
- ONNXModel → SynapseMLLogging → Identifiable
-
def
write: MLWriter
- Definition Classes
- ComplexParamsWritable → MLWritable