ICETransformer implements ICETransformer
More...
◆ ICETransformer() [1/2]
Synapse.ML.Explainers.ICETransformer.ICETransformer |
( |
| ) |
|
|
inline |
◆ ICETransformer() [2/2]
Synapse.ML.Explainers.ICETransformer.ICETransformer |
( |
string |
uid | ) |
|
|
inline |
Creates a ICETransformer with a UID that is used to give the ICETransformer a unique ID.
- Parameters
-
uid | An immutable unique ID for the object and its derivatives. |
◆ GetCategoricalFeatures()
ICECategoricalFeature [] Synapse.ML.Explainers.ICETransformer.GetCategoricalFeatures |
( |
| ) |
|
Gets categoricalFeatures value
- Returns
- categoricalFeatures: The list of categorical features to explain.
◆ GetDependenceNameCol()
string Synapse.ML.Explainers.ICETransformer.GetDependenceNameCol |
( |
| ) |
|
Gets dependenceNameCol value
- Returns
- dependenceNameCol: Output column name which corresponds to dependence values of PDP-based-feature-importance option (kind ==
feature
)
◆ GetFeatureNameCol()
string Synapse.ML.Explainers.ICETransformer.GetFeatureNameCol |
( |
| ) |
|
Gets featureNameCol value
- Returns
- featureNameCol: Output column name which corresponds to names of the features used in calculation of PDP-based-feature-importance option (kind ==
feature
)
◆ GetKind()
string Synapse.ML.Explainers.ICETransformer.GetKind |
( |
| ) |
|
Gets kind value
- Returns
- kind: Whether to return the partial dependence plot (PDP) averaged across all the samples in the dataset or individual feature importance (ICE) per sample. Allowed values are "average" for PDP, "individual" for ICE and "feature" for PDP-based feature importance.
◆ GetModel()
JavaTransformer Synapse.ML.Explainers.ICETransformer.GetModel |
( |
| ) |
|
|
inline |
Gets model value
- Returns
- model: The model to be interpreted.
◆ GetNumericFeatures()
ICENumericFeature [] Synapse.ML.Explainers.ICETransformer.GetNumericFeatures |
( |
| ) |
|
Gets numericFeatures value
- Returns
- numericFeatures: The list of numeric features to explain.
◆ GetNumSamples()
int Synapse.ML.Explainers.ICETransformer.GetNumSamples |
( |
| ) |
|
Gets numSamples value
- Returns
- numSamples: Number of samples to generate.
◆ GetTargetClasses()
int [] Synapse.ML.Explainers.ICETransformer.GetTargetClasses |
( |
| ) |
|
Gets targetClasses value
- Returns
- targetClasses: The indices of the classes for multinomial classification models. Default: 0.For regression models this parameter is ignored.
◆ GetTargetClassesCol()
string Synapse.ML.Explainers.ICETransformer.GetTargetClassesCol |
( |
| ) |
|
Gets targetClassesCol value
- Returns
- targetClassesCol: The name of the column that specifies the indices of the classes for multinomial classification models.
◆ GetTargetCol()
string Synapse.ML.Explainers.ICETransformer.GetTargetCol |
( |
| ) |
|
Gets targetCol value
- Returns
- targetCol: The column name of the prediction target to explain (i.e. the response variable). This is usually set to "prediction" for regression models and "probability" for probabilistic classification models. Default value: probability
◆ Load()
static ICETransformer Synapse.ML.Explainers.ICETransformer.Load |
( |
string |
path | ) |
|
|
static |
◆ Read()
JavaMLReader<ICETransformer> Synapse.ML.Explainers.ICETransformer.Read |
( |
| ) |
|
Get the corresponding JavaMLReader instance.
- Returns
- an JavaMLReader<ICETransformer> instance for this ML instance.
◆ Save()
void Synapse.ML.Explainers.ICETransformer.Save |
( |
string |
path | ) |
|
Saves the object so that it can be loaded later using Load. Note that these objects can be shared with Scala by Loading or Saving in Scala.
- Parameters
-
path | The path to save the object to |
◆ SetCategoricalFeatures()
ICETransformer Synapse.ML.Explainers.ICETransformer.SetCategoricalFeatures |
( |
ICECategoricalFeature[] |
value | ) |
|
Sets value for categoricalFeatures
- Parameters
-
value | The list of categorical features to explain. |
- Returns
- New ICETransformer object
◆ SetDependenceNameCol()
ICETransformer Synapse.ML.Explainers.ICETransformer.SetDependenceNameCol |
( |
string |
value | ) |
|
Sets value for dependenceNameCol
- Parameters
-
value | Output column name which corresponds to dependence values of PDP-based-feature-importance option (kind == feature ) |
- Returns
- New ICETransformer object
◆ SetFeatureNameCol()
ICETransformer Synapse.ML.Explainers.ICETransformer.SetFeatureNameCol |
( |
string |
value | ) |
|
Sets value for featureNameCol
- Parameters
-
value | Output column name which corresponds to names of the features used in calculation of PDP-based-feature-importance option (kind == feature ) |
- Returns
- New ICETransformer object
◆ SetKind()
ICETransformer Synapse.ML.Explainers.ICETransformer.SetKind |
( |
string |
value | ) |
|
Sets value for kind
- Parameters
-
value | Whether to return the partial dependence plot (PDP) averaged across all the samples in the dataset or individual feature importance (ICE) per sample. Allowed values are "average" for PDP, "individual" for ICE and "feature" for PDP-based feature importance. |
- Returns
- New ICETransformer object
◆ SetModel()
ICETransformer Synapse.ML.Explainers.ICETransformer.SetModel |
( |
JavaTransformer |
value | ) |
|
Sets value for model
- Parameters
-
value | The model to be interpreted. |
- Returns
- New ICETransformer object
◆ SetNumericFeatures()
ICETransformer Synapse.ML.Explainers.ICETransformer.SetNumericFeatures |
( |
ICENumericFeature[] |
value | ) |
|
Sets value for numericFeatures
- Parameters
-
value | The list of numeric features to explain. |
- Returns
- New ICETransformer object
◆ SetNumSamples()
ICETransformer Synapse.ML.Explainers.ICETransformer.SetNumSamples |
( |
int |
value | ) |
|
Sets value for numSamples
- Parameters
-
value | Number of samples to generate. |
- Returns
- New ICETransformer object
◆ SetTargetClasses()
ICETransformer Synapse.ML.Explainers.ICETransformer.SetTargetClasses |
( |
int[] |
value | ) |
|
Sets value for targetClasses
- Parameters
-
value | The indices of the classes for multinomial classification models. Default: 0.For regression models this parameter is ignored. |
- Returns
- New ICETransformer object
◆ SetTargetClassesCol()
ICETransformer Synapse.ML.Explainers.ICETransformer.SetTargetClassesCol |
( |
string |
value | ) |
|
Sets value for targetClassesCol
- Parameters
-
value | The name of the column that specifies the indices of the classes for multinomial classification models. |
- Returns
- New ICETransformer object
◆ SetTargetCol()
ICETransformer Synapse.ML.Explainers.ICETransformer.SetTargetCol |
( |
string |
value | ) |
|
Sets value for targetCol
- Parameters
-
value | The column name of the prediction target to explain (i.e. the response variable). This is usually set to "prediction" for regression models and "probability" for probabilistic classification models. Default value: probability |
- Returns
- New ICETransformer object
The documentation for this class was generated from the following file:
- synapse/ml/explainers/ICETransformer.cs