Synapseml  1.0.2
Public Member Functions | Static Public Member Functions | List of all members
Synapse.ML.Isolationforest.IsolationForest Class Reference

IsolationForest implements IsolationForest More...

Inheritance diagram for Synapse.ML.Isolationforest.IsolationForest:
Inheritance graph
[legend]
Collaboration diagram for Synapse.ML.Isolationforest.IsolationForest:
Collaboration graph
[legend]

Public Member Functions

 IsolationForest ()
 Creates a IsolationForest without any parameters. More...
 
 IsolationForest (string uid)
 Creates a IsolationForest with a UID that is used to give the IsolationForest a unique ID. More...
 
IsolationForest SetBootstrap (bool value)
 Sets value for bootstrap More...
 
IsolationForest SetContamination (double value)
 Sets value for contamination More...
 
IsolationForest SetContaminationError (double value)
 Sets value for contaminationError More...
 
IsolationForest SetFeaturesCol (string value)
 Sets value for featuresCol More...
 
IsolationForest SetMaxFeatures (double value)
 Sets value for maxFeatures More...
 
IsolationForest SetMaxSamples (double value)
 Sets value for maxSamples More...
 
IsolationForest SetNumEstimators (int value)
 Sets value for numEstimators More...
 
IsolationForest SetPredictionCol (string value)
 Sets value for predictionCol More...
 
IsolationForest SetRandomSeed (long value)
 Sets value for randomSeed More...
 
IsolationForest SetScoreCol (string value)
 Sets value for scoreCol More...
 
bool GetBootstrap ()
 Gets bootstrap value More...
 
double GetContamination ()
 Gets contamination value More...
 
double GetContaminationError ()
 Gets contaminationError value More...
 
string GetFeaturesCol ()
 Gets featuresCol value More...
 
double GetMaxFeatures ()
 Gets maxFeatures value More...
 
double GetMaxSamples ()
 Gets maxSamples value More...
 
int GetNumEstimators ()
 Gets numEstimators value More...
 
string GetPredictionCol ()
 Gets predictionCol value More...
 
long GetRandomSeed ()
 Gets randomSeed value More...
 
string GetScoreCol ()
 Gets scoreCol value More...
 
override IsolationForestModel Fit (DataFrame dataset)
 Fits a model to the input data. More...
 
void Save (string path)
 Saves the object so that it can be loaded later using Load. Note that these objects can be shared with Scala by Loading or Saving in Scala. More...
 
JavaMLWriter Write ()
 
Returns
a JavaMLWriter instance for this ML instance.

 
JavaMLReader< IsolationForestRead ()
 Get the corresponding JavaMLReader instance. More...
 

Static Public Member Functions

static IsolationForest Load (string path)
 Loads the IsolationForest that was previously saved using Save(string). More...
 

Detailed Description

IsolationForest implements IsolationForest

Constructor & Destructor Documentation

◆ IsolationForest() [1/2]

Synapse.ML.Isolationforest.IsolationForest.IsolationForest ( )
inline

Creates a IsolationForest without any parameters.

◆ IsolationForest() [2/2]

Synapse.ML.Isolationforest.IsolationForest.IsolationForest ( string  uid)
inline

Creates a IsolationForest with a UID that is used to give the IsolationForest a unique ID.

Parameters
uidAn immutable unique ID for the object and its derivatives.

Member Function Documentation

◆ Fit()

override IsolationForestModel Synapse.ML.Isolationforest.IsolationForest.Fit ( DataFrame  dataset)

Fits a model to the input data.

Parameters
datasetThe DataFrame to fit the model to.
Returns
IsolationForestModel

◆ GetBootstrap()

bool Synapse.ML.Isolationforest.IsolationForest.GetBootstrap ( )

Gets bootstrap value

Returns
bootstrap: If true, draw sample for each tree with replacement. If false, do not sample with replacement.

◆ GetContamination()

double Synapse.ML.Isolationforest.IsolationForest.GetContamination ( )

Gets contamination value

Returns
contamination: The fraction of outliers in the training data set. If this is set to 0.0, it speeds up the training and all predicted labels will be false. The model and outlier scores are otherwise unaffected by this parameter.

◆ GetContaminationError()

double Synapse.ML.Isolationforest.IsolationForest.GetContaminationError ( )

Gets contaminationError value

Returns
contaminationError: The error allowed when calculating the threshold required to achieve the specified contamination fraction. The default is 0.0, which forces an exact calculation of the threshold. The exact calculation is slow and can fail for large datasets. If there are issues with the exact calculation, a good choice for this parameter is often 1% of the specified contamination value.

◆ GetFeaturesCol()

string Synapse.ML.Isolationforest.IsolationForest.GetFeaturesCol ( )

Gets featuresCol value

Returns
featuresCol: The feature vector.

◆ GetMaxFeatures()

double Synapse.ML.Isolationforest.IsolationForest.GetMaxFeatures ( )

Gets maxFeatures value

Returns
maxFeatures: The number of features used to train each tree. If this value is between 0.0 and 1.0, then it is treated as a fraction. If it is >1.0, then it is treated as a count.

◆ GetMaxSamples()

double Synapse.ML.Isolationforest.IsolationForest.GetMaxSamples ( )

Gets maxSamples value

Returns
maxSamples: The number of samples used to train each tree. If this value is between 0.0 and 1.0, then it is treated as a fraction. If it is >1.0, then it is treated as a count.

◆ GetNumEstimators()

int Synapse.ML.Isolationforest.IsolationForest.GetNumEstimators ( )

Gets numEstimators value

Returns
numEstimators: The number of trees in the ensemble.

◆ GetPredictionCol()

string Synapse.ML.Isolationforest.IsolationForest.GetPredictionCol ( )

Gets predictionCol value

Returns
predictionCol: The predicted label.

◆ GetRandomSeed()

long Synapse.ML.Isolationforest.IsolationForest.GetRandomSeed ( )

Gets randomSeed value

Returns
randomSeed: The seed used for the random number generator.

◆ GetScoreCol()

string Synapse.ML.Isolationforest.IsolationForest.GetScoreCol ( )

Gets scoreCol value

Returns
scoreCol: The outlier score.

◆ Load()

static IsolationForest Synapse.ML.Isolationforest.IsolationForest.Load ( string  path)
static

Loads the IsolationForest that was previously saved using Save(string).

Parameters
pathThe path the previous IsolationForest was saved to
Returns
New IsolationForest object, loaded from path.

◆ Read()

JavaMLReader<IsolationForest> Synapse.ML.Isolationforest.IsolationForest.Read ( )

Get the corresponding JavaMLReader instance.

Returns
an JavaMLReader<IsolationForest> instance for this ML instance.

◆ Save()

void Synapse.ML.Isolationforest.IsolationForest.Save ( string  path)

Saves the object so that it can be loaded later using Load. Note that these objects can be shared with Scala by Loading or Saving in Scala.

Parameters
pathThe path to save the object to

◆ SetBootstrap()

IsolationForest Synapse.ML.Isolationforest.IsolationForest.SetBootstrap ( bool  value)

Sets value for bootstrap

Parameters
valueIf true, draw sample for each tree with replacement. If false, do not sample with replacement.
Returns
New IsolationForest object

◆ SetContamination()

IsolationForest Synapse.ML.Isolationforest.IsolationForest.SetContamination ( double  value)

Sets value for contamination

Parameters
valueThe fraction of outliers in the training data set. If this is set to 0.0, it speeds up the training and all predicted labels will be false. The model and outlier scores are otherwise unaffected by this parameter.
Returns
New IsolationForest object

◆ SetContaminationError()

IsolationForest Synapse.ML.Isolationforest.IsolationForest.SetContaminationError ( double  value)

Sets value for contaminationError

Parameters
valueThe error allowed when calculating the threshold required to achieve the specified contamination fraction. The default is 0.0, which forces an exact calculation of the threshold. The exact calculation is slow and can fail for large datasets. If there are issues with the exact calculation, a good choice for this parameter is often 1% of the specified contamination value.
Returns
New IsolationForest object

◆ SetFeaturesCol()

IsolationForest Synapse.ML.Isolationforest.IsolationForest.SetFeaturesCol ( string  value)

Sets value for featuresCol

Parameters
valueThe feature vector.
Returns
New IsolationForest object

◆ SetMaxFeatures()

IsolationForest Synapse.ML.Isolationforest.IsolationForest.SetMaxFeatures ( double  value)

Sets value for maxFeatures

Parameters
valueThe number of features used to train each tree. If this value is between 0.0 and 1.0, then it is treated as a fraction. If it is >1.0, then it is treated as a count.
Returns
New IsolationForest object

◆ SetMaxSamples()

IsolationForest Synapse.ML.Isolationforest.IsolationForest.SetMaxSamples ( double  value)

Sets value for maxSamples

Parameters
valueThe number of samples used to train each tree. If this value is between 0.0 and 1.0, then it is treated as a fraction. If it is >1.0, then it is treated as a count.
Returns
New IsolationForest object

◆ SetNumEstimators()

IsolationForest Synapse.ML.Isolationforest.IsolationForest.SetNumEstimators ( int  value)

Sets value for numEstimators

Parameters
valueThe number of trees in the ensemble.
Returns
New IsolationForest object

◆ SetPredictionCol()

IsolationForest Synapse.ML.Isolationforest.IsolationForest.SetPredictionCol ( string  value)

Sets value for predictionCol

Parameters
valueThe predicted label.
Returns
New IsolationForest object

◆ SetRandomSeed()

IsolationForest Synapse.ML.Isolationforest.IsolationForest.SetRandomSeed ( long  value)

Sets value for randomSeed

Parameters
valueThe seed used for the random number generator.
Returns
New IsolationForest object

◆ SetScoreCol()

IsolationForest Synapse.ML.Isolationforest.IsolationForest.SetScoreCol ( string  value)

Sets value for scoreCol

Parameters
valueThe outlier score.
Returns
New IsolationForest object

The documentation for this class was generated from the following file: