Synapseml  1.0.2
Public Member Functions | Static Public Member Functions | List of all members
Synapse.ML.Lightgbm.LightGBMClassificationModel Class Reference

LightGBMClassificationModel implements LightGBMClassificationModel More...

Inheritance diagram for Synapse.ML.Lightgbm.LightGBMClassificationModel:
Inheritance graph
[legend]
Collaboration diagram for Synapse.ML.Lightgbm.LightGBMClassificationModel:
Collaboration graph
[legend]

Public Member Functions

 LightGBMClassificationModel ()
 Creates a LightGBMClassificationModel without any parameters. More...
 
 LightGBMClassificationModel (string uid)
 Creates a LightGBMClassificationModel with a UID that is used to give the LightGBMClassificationModel a unique ID. More...
 
LightGBMClassificationModel SetActualNumClasses (int value)
 Sets value for actualNumClasses More...
 
LightGBMClassificationModel SetFeaturesCol (string value)
 Sets value for featuresCol More...
 
LightGBMClassificationModel SetFeaturesShapCol (string value)
 Sets value for featuresShapCol More...
 
LightGBMClassificationModel SetLabelCol (string value)
 Sets value for labelCol More...
 
LightGBMClassificationModel SetLeafPredictionCol (string value)
 Sets value for leafPredictionCol More...
 
LightGBMClassificationModel SetLightGBMBooster (LightGBMBooster value)
 Sets value for lightGBMBooster More...
 
LightGBMClassificationModel SetNumIterations (int value)
 Sets value for numIterations More...
 
LightGBMClassificationModel SetPredictDisableShapeCheck (bool value)
 Sets value for predictDisableShapeCheck More...
 
LightGBMClassificationModel SetPredictionCol (string value)
 Sets value for predictionCol More...
 
LightGBMClassificationModel SetProbabilityCol (string value)
 Sets value for probabilityCol More...
 
LightGBMClassificationModel SetRawPredictionCol (string value)
 Sets value for rawPredictionCol More...
 
LightGBMClassificationModel SetStartIteration (int value)
 Sets value for startIteration More...
 
LightGBMClassificationModel SetThresholds (double[] value)
 Sets value for thresholds More...
 
int GetActualNumClasses ()
 Gets actualNumClasses value More...
 
string GetFeaturesCol ()
 Gets featuresCol value More...
 
string GetFeaturesShapCol ()
 Gets featuresShapCol value More...
 
string GetLabelCol ()
 Gets labelCol value More...
 
string GetLeafPredictionCol ()
 Gets leafPredictionCol value More...
 
LightGBMBooster GetLightGBMBooster ()
 Gets lightGBMBooster value More...
 
int GetNumIterations ()
 Gets numIterations value More...
 
bool GetPredictDisableShapeCheck ()
 Gets predictDisableShapeCheck value More...
 
string GetPredictionCol ()
 Gets predictionCol value More...
 
string GetProbabilityCol ()
 Gets probabilityCol value More...
 
string GetRawPredictionCol ()
 Gets rawPredictionCol value More...
 
int GetStartIteration ()
 Gets startIteration value More...
 
double[] GetThresholds ()
 Gets thresholds value More...
 
void Save (string path)
 Saves the object so that it can be loaded later using Load. Note that these objects can be shared with Scala by Loading or Saving in Scala. More...
 
JavaMLWriter Write ()
 
Returns
a JavaMLWriter instance for this ML instance.

 
JavaMLReader< LightGBMClassificationModelRead ()
 Get the corresponding JavaMLReader instance. More...
 

Static Public Member Functions

static LightGBMClassificationModel Load (string path)
 Loads the LightGBMClassificationModel that was previously saved using Save(string). More...
 

Detailed Description

LightGBMClassificationModel implements LightGBMClassificationModel

Constructor & Destructor Documentation

◆ LightGBMClassificationModel() [1/2]

Synapse.ML.Lightgbm.LightGBMClassificationModel.LightGBMClassificationModel ( )
inline

Creates a LightGBMClassificationModel without any parameters.

◆ LightGBMClassificationModel() [2/2]

Synapse.ML.Lightgbm.LightGBMClassificationModel.LightGBMClassificationModel ( string  uid)
inline

Creates a LightGBMClassificationModel with a UID that is used to give the LightGBMClassificationModel a unique ID.

Parameters
uidAn immutable unique ID for the object and its derivatives.

Member Function Documentation

◆ GetActualNumClasses()

int Synapse.ML.Lightgbm.LightGBMClassificationModel.GetActualNumClasses ( )

Gets actualNumClasses value

Returns
actualNumClasses: Inferred number of classes based on dataset metadata or, if there is no metadata, unique count

◆ GetFeaturesCol()

string Synapse.ML.Lightgbm.LightGBMClassificationModel.GetFeaturesCol ( )

Gets featuresCol value

Returns
featuresCol: features column name

◆ GetFeaturesShapCol()

string Synapse.ML.Lightgbm.LightGBMClassificationModel.GetFeaturesShapCol ( )

Gets featuresShapCol value

Returns
featuresShapCol: Output SHAP vector column name after prediction containing the feature contribution values

◆ GetLabelCol()

string Synapse.ML.Lightgbm.LightGBMClassificationModel.GetLabelCol ( )

Gets labelCol value

Returns
labelCol: label column name

◆ GetLeafPredictionCol()

string Synapse.ML.Lightgbm.LightGBMClassificationModel.GetLeafPredictionCol ( )

Gets leafPredictionCol value

Returns
leafPredictionCol: Predicted leaf indices's column name

◆ GetLightGBMBooster()

LightGBMBooster Synapse.ML.Lightgbm.LightGBMClassificationModel.GetLightGBMBooster ( )

Gets lightGBMBooster value

Returns
lightGBMBooster: The trained LightGBM booster

◆ GetNumIterations()

int Synapse.ML.Lightgbm.LightGBMClassificationModel.GetNumIterations ( )

Gets numIterations value

Returns
numIterations: Sets the total number of iterations used in the prediction.If <= 0, all iterations from start_iteration are used (no limits).

◆ GetPredictDisableShapeCheck()

bool Synapse.ML.Lightgbm.LightGBMClassificationModel.GetPredictDisableShapeCheck ( )

Gets predictDisableShapeCheck value

Returns
predictDisableShapeCheck: control whether or not LightGBM raises an error when you try to predict on data with a different number of features than the training data

◆ GetPredictionCol()

string Synapse.ML.Lightgbm.LightGBMClassificationModel.GetPredictionCol ( )

Gets predictionCol value

Returns
predictionCol: prediction column name

◆ GetProbabilityCol()

string Synapse.ML.Lightgbm.LightGBMClassificationModel.GetProbabilityCol ( )

Gets probabilityCol value

Returns
probabilityCol: Column name for predicted class conditional probabilities. Note: Not all models output well-calibrated probability estimates! These probabilities should be treated as confidences, not precise probabilities

◆ GetRawPredictionCol()

string Synapse.ML.Lightgbm.LightGBMClassificationModel.GetRawPredictionCol ( )

Gets rawPredictionCol value

Returns
rawPredictionCol: raw prediction (a.k.a. confidence) column name

◆ GetStartIteration()

int Synapse.ML.Lightgbm.LightGBMClassificationModel.GetStartIteration ( )

Gets startIteration value

Returns
startIteration: Sets the start index of the iteration to predict. If <= 0, starts from the first iteration.

◆ GetThresholds()

double [] Synapse.ML.Lightgbm.LightGBMClassificationModel.GetThresholds ( )

Gets thresholds value

Returns
thresholds: Thresholds in multi-class classification to adjust the probability of predicting each class. Array must have length equal to the number of classes, with values > 0 excepting that at most one value may be 0. The class with largest value p/t is predicted, where p is the original probability of that class and t is the class's threshold

◆ Load()

static LightGBMClassificationModel Synapse.ML.Lightgbm.LightGBMClassificationModel.Load ( string  path)
static

Loads the LightGBMClassificationModel that was previously saved using Save(string).

Parameters
pathThe path the previous LightGBMClassificationModel was saved to
Returns
New LightGBMClassificationModel object, loaded from path.

◆ Read()

JavaMLReader<LightGBMClassificationModel> Synapse.ML.Lightgbm.LightGBMClassificationModel.Read ( )

Get the corresponding JavaMLReader instance.

Returns
an JavaMLReader<LightGBMClassificationModel> instance for this ML instance.

◆ Save()

void Synapse.ML.Lightgbm.LightGBMClassificationModel.Save ( string  path)

Saves the object so that it can be loaded later using Load. Note that these objects can be shared with Scala by Loading or Saving in Scala.

Parameters
pathThe path to save the object to

◆ SetActualNumClasses()

LightGBMClassificationModel Synapse.ML.Lightgbm.LightGBMClassificationModel.SetActualNumClasses ( int  value)

Sets value for actualNumClasses

Parameters
valueInferred number of classes based on dataset metadata or, if there is no metadata, unique count
Returns
New LightGBMClassificationModel object

◆ SetFeaturesCol()

LightGBMClassificationModel Synapse.ML.Lightgbm.LightGBMClassificationModel.SetFeaturesCol ( string  value)

Sets value for featuresCol

Parameters
valuefeatures column name
Returns
New LightGBMClassificationModel object

◆ SetFeaturesShapCol()

LightGBMClassificationModel Synapse.ML.Lightgbm.LightGBMClassificationModel.SetFeaturesShapCol ( string  value)

Sets value for featuresShapCol

Parameters
valueOutput SHAP vector column name after prediction containing the feature contribution values
Returns
New LightGBMClassificationModel object

◆ SetLabelCol()

LightGBMClassificationModel Synapse.ML.Lightgbm.LightGBMClassificationModel.SetLabelCol ( string  value)

Sets value for labelCol

Parameters
valuelabel column name
Returns
New LightGBMClassificationModel object

◆ SetLeafPredictionCol()

LightGBMClassificationModel Synapse.ML.Lightgbm.LightGBMClassificationModel.SetLeafPredictionCol ( string  value)

Sets value for leafPredictionCol

Parameters
valuePredicted leaf indices's column name
Returns
New LightGBMClassificationModel object

◆ SetLightGBMBooster()

LightGBMClassificationModel Synapse.ML.Lightgbm.LightGBMClassificationModel.SetLightGBMBooster ( LightGBMBooster  value)

Sets value for lightGBMBooster

Parameters
valueThe trained LightGBM booster
Returns
New LightGBMClassificationModel object

◆ SetNumIterations()

LightGBMClassificationModel Synapse.ML.Lightgbm.LightGBMClassificationModel.SetNumIterations ( int  value)

Sets value for numIterations

Parameters
valueSets the total number of iterations used in the prediction.If <= 0, all iterations from start_iteration are used (no limits).
Returns
New LightGBMClassificationModel object

◆ SetPredictDisableShapeCheck()

LightGBMClassificationModel Synapse.ML.Lightgbm.LightGBMClassificationModel.SetPredictDisableShapeCheck ( bool  value)

Sets value for predictDisableShapeCheck

Parameters
valuecontrol whether or not LightGBM raises an error when you try to predict on data with a different number of features than the training data
Returns
New LightGBMClassificationModel object

◆ SetPredictionCol()

LightGBMClassificationModel Synapse.ML.Lightgbm.LightGBMClassificationModel.SetPredictionCol ( string  value)

Sets value for predictionCol

Parameters
valueprediction column name
Returns
New LightGBMClassificationModel object

◆ SetProbabilityCol()

LightGBMClassificationModel Synapse.ML.Lightgbm.LightGBMClassificationModel.SetProbabilityCol ( string  value)

Sets value for probabilityCol

Parameters
valueColumn name for predicted class conditional probabilities. Note: Not all models output well-calibrated probability estimates! These probabilities should be treated as confidences, not precise probabilities
Returns
New LightGBMClassificationModel object

◆ SetRawPredictionCol()

LightGBMClassificationModel Synapse.ML.Lightgbm.LightGBMClassificationModel.SetRawPredictionCol ( string  value)

Sets value for rawPredictionCol

Parameters
valueraw prediction (a.k.a. confidence) column name
Returns
New LightGBMClassificationModel object

◆ SetStartIteration()

LightGBMClassificationModel Synapse.ML.Lightgbm.LightGBMClassificationModel.SetStartIteration ( int  value)

Sets value for startIteration

Parameters
valueSets the start index of the iteration to predict. If <= 0, starts from the first iteration.
Returns
New LightGBMClassificationModel object

◆ SetThresholds()

LightGBMClassificationModel Synapse.ML.Lightgbm.LightGBMClassificationModel.SetThresholds ( double[]  value)

Sets value for thresholds

Parameters
valueThresholds in multi-class classification to adjust the probability of predicting each class. Array must have length equal to the number of classes, with values > 0 excepting that at most one value may be 0. The class with largest value p/t is predicted, where p is the original probability of that class and t is the class's threshold
Returns
New LightGBMClassificationModel object

The documentation for this class was generated from the following file: