Synapseml  1.0.2
Public Member Functions | Static Public Member Functions | List of all members
Synapse.ML.Lightgbm.LightGBMRanker Class Reference

LightGBMRanker implements LightGBMRanker More...

Inheritance diagram for Synapse.ML.Lightgbm.LightGBMRanker:
Inheritance graph
[legend]
Collaboration diagram for Synapse.ML.Lightgbm.LightGBMRanker:
Collaboration graph
[legend]

Public Member Functions

 LightGBMRanker ()
 Creates a LightGBMRanker without any parameters. More...
 
 LightGBMRanker (string uid)
 Creates a LightGBMRanker with a UID that is used to give the LightGBMRanker a unique ID. More...
 
LightGBMRanker SetBaggingFraction (double value)
 Sets value for baggingFraction More...
 
LightGBMRanker SetBaggingFreq (int value)
 Sets value for baggingFreq More...
 
LightGBMRanker SetBaggingSeed (int value)
 Sets value for baggingSeed More...
 
LightGBMRanker SetBinSampleCount (int value)
 Sets value for binSampleCount More...
 
LightGBMRanker SetBoostFromAverage (bool value)
 Sets value for boostFromAverage More...
 
LightGBMRanker SetBoostingType (string value)
 Sets value for boostingType More...
 
LightGBMRanker SetCatSmooth (double value)
 Sets value for catSmooth More...
 
LightGBMRanker SetCategoricalSlotIndexes (int[] value)
 Sets value for categoricalSlotIndexes More...
 
LightGBMRanker SetCategoricalSlotNames (string[] value)
 Sets value for categoricalSlotNames More...
 
LightGBMRanker SetCatl2 (double value)
 Sets value for catl2 More...
 
LightGBMRanker SetChunkSize (int value)
 Sets value for chunkSize More...
 
LightGBMRanker SetDataRandomSeed (int value)
 Sets value for dataRandomSeed More...
 
LightGBMRanker SetDataTransferMode (string value)
 Sets value for dataTransferMode More...
 
LightGBMRanker SetDefaultListenPort (int value)
 Sets value for defaultListenPort More...
 
LightGBMRanker SetDeterministic (bool value)
 Sets value for deterministic More...
 
LightGBMRanker SetDriverListenPort (int value)
 Sets value for driverListenPort More...
 
LightGBMRanker SetDropRate (double value)
 Sets value for dropRate More...
 
LightGBMRanker SetDropSeed (int value)
 Sets value for dropSeed More...
 
LightGBMRanker SetEarlyStoppingRound (int value)
 Sets value for earlyStoppingRound More...
 
LightGBMRanker SetEvalAt (int[] value)
 Sets value for evalAt More...
 
LightGBMRanker SetExecutionMode (string value)
 Sets value for executionMode More...
 
LightGBMRanker SetExtraSeed (int value)
 Sets value for extraSeed More...
 
LightGBMRanker SetFeatureFraction (double value)
 Sets value for featureFraction More...
 
LightGBMRanker SetFeatureFractionByNode (double value)
 Sets value for featureFractionByNode More...
 
LightGBMRanker SetFeatureFractionSeed (int value)
 Sets value for featureFractionSeed More...
 
LightGBMRanker SetFeaturesCol (string value)
 Sets value for featuresCol More...
 
LightGBMRanker SetFeaturesShapCol (string value)
 Sets value for featuresShapCol More...
 
LightGBMRanker SetFobj (object value)
 Sets value for fobj More...
 
LightGBMRanker SetGroupCol (string value)
 Sets value for groupCol More...
 
LightGBMRanker SetImprovementTolerance (double value)
 Sets value for improvementTolerance More...
 
LightGBMRanker SetInitScoreCol (string value)
 Sets value for initScoreCol More...
 
LightGBMRanker SetIsEnableSparse (bool value)
 Sets value for isEnableSparse More...
 
LightGBMRanker SetIsProvideTrainingMetric (bool value)
 Sets value for isProvideTrainingMetric More...
 
LightGBMRanker SetLabelCol (string value)
 Sets value for labelCol More...
 
LightGBMRanker SetLabelGain (double[] value)
 Sets value for labelGain More...
 
LightGBMRanker SetLambdaL1 (double value)
 Sets value for lambdaL1 More...
 
LightGBMRanker SetLambdaL2 (double value)
 Sets value for lambdaL2 More...
 
LightGBMRanker SetLeafPredictionCol (string value)
 Sets value for leafPredictionCol More...
 
LightGBMRanker SetLearningRate (double value)
 Sets value for learningRate More...
 
LightGBMRanker SetMatrixType (string value)
 Sets value for matrixType More...
 
LightGBMRanker SetMaxBin (int value)
 Sets value for maxBin More...
 
LightGBMRanker SetMaxBinByFeature (int[] value)
 Sets value for maxBinByFeature More...
 
LightGBMRanker SetMaxCatThreshold (int value)
 Sets value for maxCatThreshold More...
 
LightGBMRanker SetMaxCatToOnehot (int value)
 Sets value for maxCatToOnehot More...
 
LightGBMRanker SetMaxDeltaStep (double value)
 Sets value for maxDeltaStep More...
 
LightGBMRanker SetMaxDepth (int value)
 Sets value for maxDepth More...
 
LightGBMRanker SetMaxDrop (int value)
 Sets value for maxDrop More...
 
LightGBMRanker SetMaxNumClasses (int value)
 Sets value for maxNumClasses More...
 
LightGBMRanker SetMaxPosition (int value)
 Sets value for maxPosition More...
 
LightGBMRanker SetMaxStreamingOMPThreads (int value)
 Sets value for maxStreamingOMPThreads More...
 
LightGBMRanker SetMetric (string value)
 Sets value for metric More...
 
LightGBMRanker SetMicroBatchSize (int value)
 Sets value for microBatchSize More...
 
LightGBMRanker SetMinDataInLeaf (int value)
 Sets value for minDataInLeaf More...
 
LightGBMRanker SetMinDataPerBin (int value)
 Sets value for minDataPerBin More...
 
LightGBMRanker SetMinDataPerGroup (int value)
 Sets value for minDataPerGroup More...
 
LightGBMRanker SetMinGainToSplit (double value)
 Sets value for minGainToSplit More...
 
LightGBMRanker SetMinSumHessianInLeaf (double value)
 Sets value for minSumHessianInLeaf More...
 
LightGBMRanker SetModelString (string value)
 Sets value for modelString More...
 
LightGBMRanker SetMonotoneConstraints (int[] value)
 Sets value for monotoneConstraints More...
 
LightGBMRanker SetMonotoneConstraintsMethod (string value)
 Sets value for monotoneConstraintsMethod More...
 
LightGBMRanker SetMonotonePenalty (double value)
 Sets value for monotonePenalty More...
 
LightGBMRanker SetNegBaggingFraction (double value)
 Sets value for negBaggingFraction More...
 
LightGBMRanker SetNumBatches (int value)
 Sets value for numBatches More...
 
LightGBMRanker SetNumIterations (int value)
 Sets value for numIterations More...
 
LightGBMRanker SetNumLeaves (int value)
 Sets value for numLeaves More...
 
LightGBMRanker SetNumTasks (int value)
 Sets value for numTasks More...
 
LightGBMRanker SetNumThreads (int value)
 Sets value for numThreads More...
 
LightGBMRanker SetObjective (string value)
 Sets value for objective More...
 
LightGBMRanker SetObjectiveSeed (int value)
 Sets value for objectiveSeed More...
 
LightGBMRanker SetOtherRate (double value)
 Sets value for otherRate More...
 
LightGBMRanker SetParallelism (string value)
 Sets value for parallelism More...
 
LightGBMRanker SetPassThroughArgs (string value)
 Sets value for passThroughArgs More...
 
LightGBMRanker SetPosBaggingFraction (double value)
 Sets value for posBaggingFraction More...
 
LightGBMRanker SetPredictDisableShapeCheck (bool value)
 Sets value for predictDisableShapeCheck More...
 
LightGBMRanker SetPredictionCol (string value)
 Sets value for predictionCol More...
 
LightGBMRanker SetReferenceDataset (object value)
 Sets value for referenceDataset More...
 
LightGBMRanker SetRepartitionByGroupingColumn (bool value)
 Sets value for repartitionByGroupingColumn More...
 
LightGBMRanker SetSamplingMode (string value)
 Sets value for samplingMode More...
 
LightGBMRanker SetSamplingSubsetSize (int value)
 Sets value for samplingSubsetSize More...
 
LightGBMRanker SetSeed (int value)
 Sets value for seed More...
 
LightGBMRanker SetSkipDrop (double value)
 Sets value for skipDrop More...
 
LightGBMRanker SetSlotNames (string[] value)
 Sets value for slotNames More...
 
LightGBMRanker SetTimeout (double value)
 Sets value for timeout More...
 
LightGBMRanker SetTopK (int value)
 Sets value for topK More...
 
LightGBMRanker SetTopRate (double value)
 Sets value for topRate More...
 
LightGBMRanker SetUniformDrop (bool value)
 Sets value for uniformDrop More...
 
LightGBMRanker SetUseBarrierExecutionMode (bool value)
 Sets value for useBarrierExecutionMode More...
 
LightGBMRanker SetUseMissing (bool value)
 Sets value for useMissing More...
 
LightGBMRanker SetUseSingleDatasetMode (bool value)
 Sets value for useSingleDatasetMode More...
 
LightGBMRanker SetValidationIndicatorCol (string value)
 Sets value for validationIndicatorCol More...
 
LightGBMRanker SetVerbosity (int value)
 Sets value for verbosity More...
 
LightGBMRanker SetWeightCol (string value)
 Sets value for weightCol More...
 
LightGBMRanker SetXGBoostDartMode (bool value)
 Sets value for xGBoostDartMode More...
 
LightGBMRanker SetZeroAsMissing (bool value)
 Sets value for zeroAsMissing More...
 
double GetBaggingFraction ()
 Gets baggingFraction value More...
 
int GetBaggingFreq ()
 Gets baggingFreq value More...
 
int GetBaggingSeed ()
 Gets baggingSeed value More...
 
int GetBinSampleCount ()
 Gets binSampleCount value More...
 
bool GetBoostFromAverage ()
 Gets boostFromAverage value More...
 
string GetBoostingType ()
 Gets boostingType value More...
 
double GetCatSmooth ()
 Gets catSmooth value More...
 
int[] GetCategoricalSlotIndexes ()
 Gets categoricalSlotIndexes value More...
 
string[] GetCategoricalSlotNames ()
 Gets categoricalSlotNames value More...
 
double GetCatl2 ()
 Gets catl2 value More...
 
int GetChunkSize ()
 Gets chunkSize value More...
 
int GetDataRandomSeed ()
 Gets dataRandomSeed value More...
 
string GetDataTransferMode ()
 Gets dataTransferMode value More...
 
int GetDefaultListenPort ()
 Gets defaultListenPort value More...
 
bool GetDeterministic ()
 Gets deterministic value More...
 
int GetDriverListenPort ()
 Gets driverListenPort value More...
 
double GetDropRate ()
 Gets dropRate value More...
 
int GetDropSeed ()
 Gets dropSeed value More...
 
int GetEarlyStoppingRound ()
 Gets earlyStoppingRound value More...
 
int[] GetEvalAt ()
 Gets evalAt value More...
 
string GetExecutionMode ()
 Gets executionMode value More...
 
int GetExtraSeed ()
 Gets extraSeed value More...
 
double GetFeatureFraction ()
 Gets featureFraction value More...
 
double GetFeatureFractionByNode ()
 Gets featureFractionByNode value More...
 
int GetFeatureFractionSeed ()
 Gets featureFractionSeed value More...
 
string GetFeaturesCol ()
 Gets featuresCol value More...
 
string GetFeaturesShapCol ()
 Gets featuresShapCol value More...
 
object GetFobj ()
 Gets fobj value More...
 
string GetGroupCol ()
 Gets groupCol value More...
 
double GetImprovementTolerance ()
 Gets improvementTolerance value More...
 
string GetInitScoreCol ()
 Gets initScoreCol value More...
 
bool GetIsEnableSparse ()
 Gets isEnableSparse value More...
 
bool GetIsProvideTrainingMetric ()
 Gets isProvideTrainingMetric value More...
 
string GetLabelCol ()
 Gets labelCol value More...
 
double[] GetLabelGain ()
 Gets labelGain value More...
 
double GetLambdaL1 ()
 Gets lambdaL1 value More...
 
double GetLambdaL2 ()
 Gets lambdaL2 value More...
 
string GetLeafPredictionCol ()
 Gets leafPredictionCol value More...
 
double GetLearningRate ()
 Gets learningRate value More...
 
string GetMatrixType ()
 Gets matrixType value More...
 
int GetMaxBin ()
 Gets maxBin value More...
 
int[] GetMaxBinByFeature ()
 Gets maxBinByFeature value More...
 
int GetMaxCatThreshold ()
 Gets maxCatThreshold value More...
 
int GetMaxCatToOnehot ()
 Gets maxCatToOnehot value More...
 
double GetMaxDeltaStep ()
 Gets maxDeltaStep value More...
 
int GetMaxDepth ()
 Gets maxDepth value More...
 
int GetMaxDrop ()
 Gets maxDrop value More...
 
int GetMaxNumClasses ()
 Gets maxNumClasses value More...
 
int GetMaxPosition ()
 Gets maxPosition value More...
 
int GetMaxStreamingOMPThreads ()
 Gets maxStreamingOMPThreads value More...
 
string GetMetric ()
 Gets metric value More...
 
int GetMicroBatchSize ()
 Gets microBatchSize value More...
 
int GetMinDataInLeaf ()
 Gets minDataInLeaf value More...
 
int GetMinDataPerBin ()
 Gets minDataPerBin value More...
 
int GetMinDataPerGroup ()
 Gets minDataPerGroup value More...
 
double GetMinGainToSplit ()
 Gets minGainToSplit value More...
 
double GetMinSumHessianInLeaf ()
 Gets minSumHessianInLeaf value More...
 
string GetModelString ()
 Gets modelString value More...
 
int[] GetMonotoneConstraints ()
 Gets monotoneConstraints value More...
 
string GetMonotoneConstraintsMethod ()
 Gets monotoneConstraintsMethod value More...
 
double GetMonotonePenalty ()
 Gets monotonePenalty value More...
 
double GetNegBaggingFraction ()
 Gets negBaggingFraction value More...
 
int GetNumBatches ()
 Gets numBatches value More...
 
int GetNumIterations ()
 Gets numIterations value More...
 
int GetNumLeaves ()
 Gets numLeaves value More...
 
int GetNumTasks ()
 Gets numTasks value More...
 
int GetNumThreads ()
 Gets numThreads value More...
 
string GetObjective ()
 Gets objective value More...
 
int GetObjectiveSeed ()
 Gets objectiveSeed value More...
 
double GetOtherRate ()
 Gets otherRate value More...
 
string GetParallelism ()
 Gets parallelism value More...
 
string GetPassThroughArgs ()
 Gets passThroughArgs value More...
 
double GetPosBaggingFraction ()
 Gets posBaggingFraction value More...
 
bool GetPredictDisableShapeCheck ()
 Gets predictDisableShapeCheck value More...
 
string GetPredictionCol ()
 Gets predictionCol value More...
 
object GetReferenceDataset ()
 Gets referenceDataset value More...
 
bool GetRepartitionByGroupingColumn ()
 Gets repartitionByGroupingColumn value More...
 
string GetSamplingMode ()
 Gets samplingMode value More...
 
int GetSamplingSubsetSize ()
 Gets samplingSubsetSize value More...
 
int GetSeed ()
 Gets seed value More...
 
double GetSkipDrop ()
 Gets skipDrop value More...
 
string[] GetSlotNames ()
 Gets slotNames value More...
 
double GetTimeout ()
 Gets timeout value More...
 
int GetTopK ()
 Gets topK value More...
 
double GetTopRate ()
 Gets topRate value More...
 
bool GetUniformDrop ()
 Gets uniformDrop value More...
 
bool GetUseBarrierExecutionMode ()
 Gets useBarrierExecutionMode value More...
 
bool GetUseMissing ()
 Gets useMissing value More...
 
bool GetUseSingleDatasetMode ()
 Gets useSingleDatasetMode value More...
 
string GetValidationIndicatorCol ()
 Gets validationIndicatorCol value More...
 
int GetVerbosity ()
 Gets verbosity value More...
 
string GetWeightCol ()
 Gets weightCol value More...
 
bool GetXGBoostDartMode ()
 Gets xGBoostDartMode value More...
 
bool GetZeroAsMissing ()
 Gets zeroAsMissing value More...
 
override LightGBMRankerModel Fit (DataFrame dataset)
 Fits a model to the input data. More...
 
void Save (string path)
 Saves the object so that it can be loaded later using Load. Note that these objects can be shared with Scala by Loading or Saving in Scala. More...
 
JavaMLWriter Write ()
 
Returns
a JavaMLWriter instance for this ML instance.

 
JavaMLReader< LightGBMRankerRead ()
 Get the corresponding JavaMLReader instance. More...
 

Static Public Member Functions

static LightGBMRanker Load (string path)
 Loads the LightGBMRanker that was previously saved using Save(string). More...
 

Detailed Description

LightGBMRanker implements LightGBMRanker

Constructor & Destructor Documentation

◆ LightGBMRanker() [1/2]

Synapse.ML.Lightgbm.LightGBMRanker.LightGBMRanker ( )
inline

Creates a LightGBMRanker without any parameters.

◆ LightGBMRanker() [2/2]

Synapse.ML.Lightgbm.LightGBMRanker.LightGBMRanker ( string  uid)
inline

Creates a LightGBMRanker with a UID that is used to give the LightGBMRanker a unique ID.

Parameters
uidAn immutable unique ID for the object and its derivatives.

Member Function Documentation

◆ Fit()

override LightGBMRankerModel Synapse.ML.Lightgbm.LightGBMRanker.Fit ( DataFrame  dataset)

Fits a model to the input data.

Parameters
datasetThe DataFrame to fit the model to.
Returns
LightGBMRankerModel

◆ GetBaggingFraction()

double Synapse.ML.Lightgbm.LightGBMRanker.GetBaggingFraction ( )

Gets baggingFraction value

Returns
baggingFraction: Bagging fraction

◆ GetBaggingFreq()

int Synapse.ML.Lightgbm.LightGBMRanker.GetBaggingFreq ( )

Gets baggingFreq value

Returns
baggingFreq: Bagging frequency

◆ GetBaggingSeed()

int Synapse.ML.Lightgbm.LightGBMRanker.GetBaggingSeed ( )

Gets baggingSeed value

Returns
baggingSeed: Bagging seed

◆ GetBinSampleCount()

int Synapse.ML.Lightgbm.LightGBMRanker.GetBinSampleCount ( )

Gets binSampleCount value

Returns
binSampleCount: Number of samples considered at computing histogram bins

◆ GetBoostFromAverage()

bool Synapse.ML.Lightgbm.LightGBMRanker.GetBoostFromAverage ( )

Gets boostFromAverage value

Returns
boostFromAverage: Adjusts initial score to the mean of labels for faster convergence

◆ GetBoostingType()

string Synapse.ML.Lightgbm.LightGBMRanker.GetBoostingType ( )

Gets boostingType value

Returns
boostingType: Default gbdt = traditional Gradient Boosting Decision Tree. Options are: gbdt, gbrt, rf (Random Forest), random_forest, dart (Dropouts meet Multiple Additive Regression Trees), goss (Gradient-based One-Side Sampling).

◆ GetCategoricalSlotIndexes()

int [] Synapse.ML.Lightgbm.LightGBMRanker.GetCategoricalSlotIndexes ( )

Gets categoricalSlotIndexes value

Returns
categoricalSlotIndexes: List of categorical column indexes, the slot index in the features column

◆ GetCategoricalSlotNames()

string [] Synapse.ML.Lightgbm.LightGBMRanker.GetCategoricalSlotNames ( )

Gets categoricalSlotNames value

Returns
categoricalSlotNames: List of categorical column slot names, the slot name in the features column

◆ GetCatl2()

double Synapse.ML.Lightgbm.LightGBMRanker.GetCatl2 ( )

Gets catl2 value

Returns
catl2: L2 regularization in categorical split

◆ GetCatSmooth()

double Synapse.ML.Lightgbm.LightGBMRanker.GetCatSmooth ( )

Gets catSmooth value

Returns
catSmooth: this can reduce the effect of noises in categorical features, especially for categories with few data

◆ GetChunkSize()

int Synapse.ML.Lightgbm.LightGBMRanker.GetChunkSize ( )

Gets chunkSize value

Returns
chunkSize: Advanced parameter to specify the chunk size for copying Java data to native. If set too high, memory may be wasted, but if set too low, performance may be reduced during data copy.If dataset size is known beforehand, set to the number of rows in the dataset.

◆ GetDataRandomSeed()

int Synapse.ML.Lightgbm.LightGBMRanker.GetDataRandomSeed ( )

Gets dataRandomSeed value

Returns
dataRandomSeed: Random seed for sampling data to construct histogram bins.

◆ GetDataTransferMode()

string Synapse.ML.Lightgbm.LightGBMRanker.GetDataTransferMode ( )

Gets dataTransferMode value

Returns
dataTransferMode: Specify how SynapseML transfers data from Spark to LightGBM. Values can be streaming, bulk. Default is bulk, which is the legacy mode.

◆ GetDefaultListenPort()

int Synapse.ML.Lightgbm.LightGBMRanker.GetDefaultListenPort ( )

Gets defaultListenPort value

Returns
defaultListenPort: The default listen port on executors, used for testing

◆ GetDeterministic()

bool Synapse.ML.Lightgbm.LightGBMRanker.GetDeterministic ( )

Gets deterministic value

Returns
deterministic: Used only with cpu devide type. Setting this to true should ensure stable results when using the same data and the same parameters. Note: setting this to true may slow down training. To avoid potential instability due to numerical issues, please set force_col_wise=true or force_row_wise=true when setting deterministic=true

◆ GetDriverListenPort()

int Synapse.ML.Lightgbm.LightGBMRanker.GetDriverListenPort ( )

Gets driverListenPort value

Returns
driverListenPort: The listen port on a driver. Default value is 0 (random)

◆ GetDropRate()

double Synapse.ML.Lightgbm.LightGBMRanker.GetDropRate ( )

Gets dropRate value

Returns
dropRate: Dropout rate: a fraction of previous trees to drop during the dropout

◆ GetDropSeed()

int Synapse.ML.Lightgbm.LightGBMRanker.GetDropSeed ( )

Gets dropSeed value

Returns
dropSeed: Random seed to choose dropping models. Only used in dart.

◆ GetEarlyStoppingRound()

int Synapse.ML.Lightgbm.LightGBMRanker.GetEarlyStoppingRound ( )

Gets earlyStoppingRound value

Returns
earlyStoppingRound: Early stopping round

◆ GetEvalAt()

int [] Synapse.ML.Lightgbm.LightGBMRanker.GetEvalAt ( )

Gets evalAt value

Returns
evalAt: NDCG and MAP evaluation positions, separated by comma

◆ GetExecutionMode()

string Synapse.ML.Lightgbm.LightGBMRanker.GetExecutionMode ( )

Gets executionMode value

Returns
executionMode: Deprecated. Please use dataTransferMode.

◆ GetExtraSeed()

int Synapse.ML.Lightgbm.LightGBMRanker.GetExtraSeed ( )

Gets extraSeed value

Returns
extraSeed: Random seed for selecting threshold when extra_trees is true

◆ GetFeatureFraction()

double Synapse.ML.Lightgbm.LightGBMRanker.GetFeatureFraction ( )

Gets featureFraction value

Returns
featureFraction: Feature fraction

◆ GetFeatureFractionByNode()

double Synapse.ML.Lightgbm.LightGBMRanker.GetFeatureFractionByNode ( )

Gets featureFractionByNode value

Returns
featureFractionByNode: Feature fraction by node

◆ GetFeatureFractionSeed()

int Synapse.ML.Lightgbm.LightGBMRanker.GetFeatureFractionSeed ( )

Gets featureFractionSeed value

Returns
featureFractionSeed: Feature fraction seed

◆ GetFeaturesCol()

string Synapse.ML.Lightgbm.LightGBMRanker.GetFeaturesCol ( )

Gets featuresCol value

Returns
featuresCol: features column name

◆ GetFeaturesShapCol()

string Synapse.ML.Lightgbm.LightGBMRanker.GetFeaturesShapCol ( )

Gets featuresShapCol value

Returns
featuresShapCol: Output SHAP vector column name after prediction containing the feature contribution values

◆ GetFobj()

object Synapse.ML.Lightgbm.LightGBMRanker.GetFobj ( )

Gets fobj value

Returns
fobj: Customized objective function. Should accept two parameters: preds, train_data, and return (grad, hess).

◆ GetGroupCol()

string Synapse.ML.Lightgbm.LightGBMRanker.GetGroupCol ( )

Gets groupCol value

Returns
groupCol: The name of the group column

◆ GetImprovementTolerance()

double Synapse.ML.Lightgbm.LightGBMRanker.GetImprovementTolerance ( )

Gets improvementTolerance value

Returns
improvementTolerance: Tolerance to consider improvement in metric

◆ GetInitScoreCol()

string Synapse.ML.Lightgbm.LightGBMRanker.GetInitScoreCol ( )

Gets initScoreCol value

Returns
initScoreCol: The name of the initial score column, used for continued training

◆ GetIsEnableSparse()

bool Synapse.ML.Lightgbm.LightGBMRanker.GetIsEnableSparse ( )

Gets isEnableSparse value

Returns
isEnableSparse: Used to enable/disable sparse optimization

◆ GetIsProvideTrainingMetric()

bool Synapse.ML.Lightgbm.LightGBMRanker.GetIsProvideTrainingMetric ( )

Gets isProvideTrainingMetric value

Returns
isProvideTrainingMetric: Whether output metric result over training dataset.

◆ GetLabelCol()

string Synapse.ML.Lightgbm.LightGBMRanker.GetLabelCol ( )

Gets labelCol value

Returns
labelCol: label column name

◆ GetLabelGain()

double [] Synapse.ML.Lightgbm.LightGBMRanker.GetLabelGain ( )

Gets labelGain value

Returns
labelGain: graded relevance for each label in NDCG

◆ GetLambdaL1()

double Synapse.ML.Lightgbm.LightGBMRanker.GetLambdaL1 ( )

Gets lambdaL1 value

Returns
lambdaL1: L1 regularization

◆ GetLambdaL2()

double Synapse.ML.Lightgbm.LightGBMRanker.GetLambdaL2 ( )

Gets lambdaL2 value

Returns
lambdaL2: L2 regularization

◆ GetLeafPredictionCol()

string Synapse.ML.Lightgbm.LightGBMRanker.GetLeafPredictionCol ( )

Gets leafPredictionCol value

Returns
leafPredictionCol: Predicted leaf indices's column name

◆ GetLearningRate()

double Synapse.ML.Lightgbm.LightGBMRanker.GetLearningRate ( )

Gets learningRate value

Returns
learningRate: Learning rate or shrinkage rate

◆ GetMatrixType()

string Synapse.ML.Lightgbm.LightGBMRanker.GetMatrixType ( )

Gets matrixType value

Returns
matrixType: Advanced parameter to specify whether the native lightgbm matrix constructed should be sparse or dense. Values can be auto, sparse or dense. Default value is auto, which samples first ten rows to determine type.

◆ GetMaxBin()

int Synapse.ML.Lightgbm.LightGBMRanker.GetMaxBin ( )

Gets maxBin value

Returns
maxBin: Max bin

◆ GetMaxBinByFeature()

int [] Synapse.ML.Lightgbm.LightGBMRanker.GetMaxBinByFeature ( )

Gets maxBinByFeature value

Returns
maxBinByFeature: Max number of bins for each feature

◆ GetMaxCatThreshold()

int Synapse.ML.Lightgbm.LightGBMRanker.GetMaxCatThreshold ( )

Gets maxCatThreshold value

Returns
maxCatThreshold: limit number of split points considered for categorical features

◆ GetMaxCatToOnehot()

int Synapse.ML.Lightgbm.LightGBMRanker.GetMaxCatToOnehot ( )

Gets maxCatToOnehot value

Returns
maxCatToOnehot: when number of categories of one feature smaller than or equal to this, one-vs-other split algorithm will be used

◆ GetMaxDeltaStep()

double Synapse.ML.Lightgbm.LightGBMRanker.GetMaxDeltaStep ( )

Gets maxDeltaStep value

Returns
maxDeltaStep: Used to limit the max output of tree leaves

◆ GetMaxDepth()

int Synapse.ML.Lightgbm.LightGBMRanker.GetMaxDepth ( )

Gets maxDepth value

Returns
maxDepth: Max depth

◆ GetMaxDrop()

int Synapse.ML.Lightgbm.LightGBMRanker.GetMaxDrop ( )

Gets maxDrop value

Returns
maxDrop: Max number of dropped trees during one boosting iteration

◆ GetMaxNumClasses()

int Synapse.ML.Lightgbm.LightGBMRanker.GetMaxNumClasses ( )

Gets maxNumClasses value

Returns
maxNumClasses: Number of max classes to infer numClass in multi-class classification.

◆ GetMaxPosition()

int Synapse.ML.Lightgbm.LightGBMRanker.GetMaxPosition ( )

Gets maxPosition value

Returns
maxPosition: optimized NDCG at this position

◆ GetMaxStreamingOMPThreads()

int Synapse.ML.Lightgbm.LightGBMRanker.GetMaxStreamingOMPThreads ( )

Gets maxStreamingOMPThreads value

Returns
maxStreamingOMPThreads: Maximum number of OpenMP threads used by a LightGBM thread. Used only for thread-safe buffer allocation. Use -1 to use OpenMP default, but in a Spark environment it's best to set a fixed value.

◆ GetMetric()

string Synapse.ML.Lightgbm.LightGBMRanker.GetMetric ( )

Gets metric value

Returns
metric: Metrics to be evaluated on the evaluation data. Options are: empty string or not specified means that metric corresponding to specified objective will be used (this is possible only for pre-defined objective functions, otherwise no evaluation metric will be added). None (string, not a None value) means that no metric will be registered, aliases: na, null, custom. l1, absolute loss, aliases: mean_absolute_error, mae, regression_l1. l2, square loss, aliases: mean_squared_error, mse, regression_l2, regression. rmse, root square loss, aliases: root_mean_squared_error, l2_root. quantile, Quantile regression. mape, MAPE loss, aliases: mean_absolute_percentage_error. huber, Huber loss. fair, Fair loss. poisson, negative log-likelihood for Poisson regression. gamma, negative log-likelihood for Gamma regression. gamma_deviance, residual deviance for Gamma regression. tweedie, negative log-likelihood for Tweedie regression. ndcg, NDCG, aliases: lambdarank. map, MAP, aliases: mean_average_precision. auc, AUC. binary_logloss, log loss, aliases: binary. binary_error, for one sample: 0 for correct classification, 1 for error classification. multi_logloss, log loss for multi-class classification, aliases: multiclass, softmax, multiclassova, multiclass_ova, ova, ovr. multi_error, error rate for multi-class classification. cross_entropy, cross-entropy (with optional linear weights), aliases: xentropy. cross_entropy_lambda, intensity-weighted cross-entropy, aliases: xentlambda. kullback_leibler, Kullback-Leibler divergence, aliases: kldiv.

◆ GetMicroBatchSize()

int Synapse.ML.Lightgbm.LightGBMRanker.GetMicroBatchSize ( )

Gets microBatchSize value

Returns
microBatchSize: Specify how many elements are sent in a streaming micro-batch.

◆ GetMinDataInLeaf()

int Synapse.ML.Lightgbm.LightGBMRanker.GetMinDataInLeaf ( )

Gets minDataInLeaf value

Returns
minDataInLeaf: Minimal number of data in one leaf. Can be used to deal with over-fitting.

◆ GetMinDataPerBin()

int Synapse.ML.Lightgbm.LightGBMRanker.GetMinDataPerBin ( )

Gets minDataPerBin value

Returns
minDataPerBin: Minimal number of data inside one bin

◆ GetMinDataPerGroup()

int Synapse.ML.Lightgbm.LightGBMRanker.GetMinDataPerGroup ( )

Gets minDataPerGroup value

Returns
minDataPerGroup: minimal number of data per categorical group

◆ GetMinGainToSplit()

double Synapse.ML.Lightgbm.LightGBMRanker.GetMinGainToSplit ( )

Gets minGainToSplit value

Returns
minGainToSplit: The minimal gain to perform split

◆ GetMinSumHessianInLeaf()

double Synapse.ML.Lightgbm.LightGBMRanker.GetMinSumHessianInLeaf ( )

Gets minSumHessianInLeaf value

Returns
minSumHessianInLeaf: Minimal sum hessian in one leaf

◆ GetModelString()

string Synapse.ML.Lightgbm.LightGBMRanker.GetModelString ( )

Gets modelString value

Returns
modelString: LightGBM model to retrain

◆ GetMonotoneConstraints()

int [] Synapse.ML.Lightgbm.LightGBMRanker.GetMonotoneConstraints ( )

Gets monotoneConstraints value

Returns
monotoneConstraints: used for constraints of monotonic features. 1 means increasing, -1 means decreasing, 0 means non-constraint. Specify all features in order.

◆ GetMonotoneConstraintsMethod()

string Synapse.ML.Lightgbm.LightGBMRanker.GetMonotoneConstraintsMethod ( )

Gets monotoneConstraintsMethod value

Returns
monotoneConstraintsMethod: Monotone constraints method. basic, intermediate, or advanced.

◆ GetMonotonePenalty()

double Synapse.ML.Lightgbm.LightGBMRanker.GetMonotonePenalty ( )

Gets monotonePenalty value

Returns
monotonePenalty: A penalization parameter X forbids any monotone splits on the first X (rounded down) level(s) of the tree.

◆ GetNegBaggingFraction()

double Synapse.ML.Lightgbm.LightGBMRanker.GetNegBaggingFraction ( )

Gets negBaggingFraction value

Returns
negBaggingFraction: Negative Bagging fraction

◆ GetNumBatches()

int Synapse.ML.Lightgbm.LightGBMRanker.GetNumBatches ( )

Gets numBatches value

Returns
numBatches: If greater than 0, splits data into separate batches during training

◆ GetNumIterations()

int Synapse.ML.Lightgbm.LightGBMRanker.GetNumIterations ( )

Gets numIterations value

Returns
numIterations: Number of iterations, LightGBM constructs num_class * num_iterations trees

◆ GetNumLeaves()

int Synapse.ML.Lightgbm.LightGBMRanker.GetNumLeaves ( )

Gets numLeaves value

Returns
numLeaves: Number of leaves

◆ GetNumTasks()

int Synapse.ML.Lightgbm.LightGBMRanker.GetNumTasks ( )

Gets numTasks value

Returns
numTasks: Advanced parameter to specify the number of tasks. SynapseML tries to guess this based on cluster configuration, but this parameter can be used to override.

◆ GetNumThreads()

int Synapse.ML.Lightgbm.LightGBMRanker.GetNumThreads ( )

Gets numThreads value

Returns
numThreads: Number of threads per executor for LightGBM. For the best speed, set this to the number of real CPU cores.

◆ GetObjective()

string Synapse.ML.Lightgbm.LightGBMRanker.GetObjective ( )

Gets objective value

Returns
objective: The Objective. For regression applications, this can be: regression_l2, regression_l1, huber, fair, poisson, quantile, mape, gamma or tweedie. For classification applications, this can be: binary, multiclass, or multiclassova.

◆ GetObjectiveSeed()

int Synapse.ML.Lightgbm.LightGBMRanker.GetObjectiveSeed ( )

Gets objectiveSeed value

Returns
objectiveSeed: Random seed for objectives, if random process is needed. Currently used only for rank_xendcg objective.

◆ GetOtherRate()

double Synapse.ML.Lightgbm.LightGBMRanker.GetOtherRate ( )

Gets otherRate value

Returns
otherRate: The retain ratio of small gradient data. Only used in goss.

◆ GetParallelism()

string Synapse.ML.Lightgbm.LightGBMRanker.GetParallelism ( )

Gets parallelism value

Returns
parallelism: Tree learner parallelism, can be set to data_parallel or voting_parallel

◆ GetPassThroughArgs()

string Synapse.ML.Lightgbm.LightGBMRanker.GetPassThroughArgs ( )

Gets passThroughArgs value

Returns
passThroughArgs: Direct string to pass through to LightGBM library (appended with other explicitly set params). Will override any parameters given with explicit setters. Can include multiple parameters in one string. e.g., force_row_wise=true

◆ GetPosBaggingFraction()

double Synapse.ML.Lightgbm.LightGBMRanker.GetPosBaggingFraction ( )

Gets posBaggingFraction value

Returns
posBaggingFraction: Positive Bagging fraction

◆ GetPredictDisableShapeCheck()

bool Synapse.ML.Lightgbm.LightGBMRanker.GetPredictDisableShapeCheck ( )

Gets predictDisableShapeCheck value

Returns
predictDisableShapeCheck: control whether or not LightGBM raises an error when you try to predict on data with a different number of features than the training data

◆ GetPredictionCol()

string Synapse.ML.Lightgbm.LightGBMRanker.GetPredictionCol ( )

Gets predictionCol value

Returns
predictionCol: prediction column name

◆ GetReferenceDataset()

object Synapse.ML.Lightgbm.LightGBMRanker.GetReferenceDataset ( )

Gets referenceDataset value

Returns
referenceDataset: The reference Dataset that was used for the fit. If using samplingMode=custom, this must be set before fit().

◆ GetRepartitionByGroupingColumn()

bool Synapse.ML.Lightgbm.LightGBMRanker.GetRepartitionByGroupingColumn ( )

Gets repartitionByGroupingColumn value

Returns
repartitionByGroupingColumn: Repartition training data according to grouping column, on by default.

◆ GetSamplingMode()

string Synapse.ML.Lightgbm.LightGBMRanker.GetSamplingMode ( )

Gets samplingMode value

Returns
samplingMode: Data sampling for streaming mode. Sampled data is used to define bins. 'global': sample from all data, 'subset': sample from first N rows, or 'fixed': Take first N rows as sample.Values can be global, subset, or fixed. Default is subset.

◆ GetSamplingSubsetSize()

int Synapse.ML.Lightgbm.LightGBMRanker.GetSamplingSubsetSize ( )

Gets samplingSubsetSize value

Returns
samplingSubsetSize: Specify subset size N for the sampling mode 'subset'. 'binSampleCount' rows will be chosen from the first N values of the dataset. Subset can be used when rows are expected to be random and data is huge.

◆ GetSeed()

int Synapse.ML.Lightgbm.LightGBMRanker.GetSeed ( )

Gets seed value

Returns
seed: Main seed, used to generate other seeds

◆ GetSkipDrop()

double Synapse.ML.Lightgbm.LightGBMRanker.GetSkipDrop ( )

Gets skipDrop value

Returns
skipDrop: Probability of skipping the dropout procedure during a boosting iteration

◆ GetSlotNames()

string [] Synapse.ML.Lightgbm.LightGBMRanker.GetSlotNames ( )

Gets slotNames value

Returns
slotNames: List of slot names in the features column

◆ GetTimeout()

double Synapse.ML.Lightgbm.LightGBMRanker.GetTimeout ( )

Gets timeout value

Returns
timeout: Timeout in seconds

◆ GetTopK()

int Synapse.ML.Lightgbm.LightGBMRanker.GetTopK ( )

Gets topK value

Returns
topK: The top_k value used in Voting parallel, set this to larger value for more accurate result, but it will slow down the training speed. It should be greater than 0

◆ GetTopRate()

double Synapse.ML.Lightgbm.LightGBMRanker.GetTopRate ( )

Gets topRate value

Returns
topRate: The retain ratio of large gradient data. Only used in goss.

◆ GetUniformDrop()

bool Synapse.ML.Lightgbm.LightGBMRanker.GetUniformDrop ( )

Gets uniformDrop value

Returns
uniformDrop: Set this to true to use uniform drop in dart mode

◆ GetUseBarrierExecutionMode()

bool Synapse.ML.Lightgbm.LightGBMRanker.GetUseBarrierExecutionMode ( )

Gets useBarrierExecutionMode value

Returns
useBarrierExecutionMode: Barrier execution mode which uses a barrier stage, off by default.

◆ GetUseMissing()

bool Synapse.ML.Lightgbm.LightGBMRanker.GetUseMissing ( )

Gets useMissing value

Returns
useMissing: Set this to false to disable the special handle of missing value

◆ GetUseSingleDatasetMode()

bool Synapse.ML.Lightgbm.LightGBMRanker.GetUseSingleDatasetMode ( )

Gets useSingleDatasetMode value

Returns
useSingleDatasetMode: Use single dataset execution mode to create a single native dataset per executor (singleton) to reduce memory and communication overhead.

◆ GetValidationIndicatorCol()

string Synapse.ML.Lightgbm.LightGBMRanker.GetValidationIndicatorCol ( )

Gets validationIndicatorCol value

Returns
validationIndicatorCol: Indicates whether the row is for training or validation

◆ GetVerbosity()

int Synapse.ML.Lightgbm.LightGBMRanker.GetVerbosity ( )

Gets verbosity value

Returns
verbosity: Verbosity where lt 0 is Fatal, eq 0 is Error, eq 1 is Info, gt 1 is Debug

◆ GetWeightCol()

string Synapse.ML.Lightgbm.LightGBMRanker.GetWeightCol ( )

Gets weightCol value

Returns
weightCol: The name of the weight column

◆ GetXGBoostDartMode()

bool Synapse.ML.Lightgbm.LightGBMRanker.GetXGBoostDartMode ( )

Gets xGBoostDartMode value

Returns
xGBoostDartMode: Set this to true to use xgboost dart mode

◆ GetZeroAsMissing()

bool Synapse.ML.Lightgbm.LightGBMRanker.GetZeroAsMissing ( )

Gets zeroAsMissing value

Returns
zeroAsMissing: Set to true to treat all zero as missing values (including the unshown values in LibSVM / sparse matrices). Set to false to use na for representing missing values

◆ Load()

static LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.Load ( string  path)
static

Loads the LightGBMRanker that was previously saved using Save(string).

Parameters
pathThe path the previous LightGBMRanker was saved to
Returns
New LightGBMRanker object, loaded from path.

◆ Read()

JavaMLReader<LightGBMRanker> Synapse.ML.Lightgbm.LightGBMRanker.Read ( )

Get the corresponding JavaMLReader instance.

Returns
an JavaMLReader<LightGBMRanker> instance for this ML instance.

◆ Save()

void Synapse.ML.Lightgbm.LightGBMRanker.Save ( string  path)

Saves the object so that it can be loaded later using Load. Note that these objects can be shared with Scala by Loading or Saving in Scala.

Parameters
pathThe path to save the object to

◆ SetBaggingFraction()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetBaggingFraction ( double  value)

Sets value for baggingFraction

Parameters
valueBagging fraction
Returns
New LightGBMRanker object

◆ SetBaggingFreq()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetBaggingFreq ( int  value)

Sets value for baggingFreq

Parameters
valueBagging frequency
Returns
New LightGBMRanker object

◆ SetBaggingSeed()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetBaggingSeed ( int  value)

Sets value for baggingSeed

Parameters
valueBagging seed
Returns
New LightGBMRanker object

◆ SetBinSampleCount()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetBinSampleCount ( int  value)

Sets value for binSampleCount

Parameters
valueNumber of samples considered at computing histogram bins
Returns
New LightGBMRanker object

◆ SetBoostFromAverage()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetBoostFromAverage ( bool  value)

Sets value for boostFromAverage

Parameters
valueAdjusts initial score to the mean of labels for faster convergence
Returns
New LightGBMRanker object

◆ SetBoostingType()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetBoostingType ( string  value)

Sets value for boostingType

Parameters
valueDefault gbdt = traditional Gradient Boosting Decision Tree. Options are: gbdt, gbrt, rf (Random Forest), random_forest, dart (Dropouts meet Multiple Additive Regression Trees), goss (Gradient-based One-Side Sampling).
Returns
New LightGBMRanker object

◆ SetCategoricalSlotIndexes()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetCategoricalSlotIndexes ( int[]  value)

Sets value for categoricalSlotIndexes

Parameters
valueList of categorical column indexes, the slot index in the features column
Returns
New LightGBMRanker object

◆ SetCategoricalSlotNames()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetCategoricalSlotNames ( string[]  value)

Sets value for categoricalSlotNames

Parameters
valueList of categorical column slot names, the slot name in the features column
Returns
New LightGBMRanker object

◆ SetCatl2()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetCatl2 ( double  value)

Sets value for catl2

Parameters
valueL2 regularization in categorical split
Returns
New LightGBMRanker object

◆ SetCatSmooth()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetCatSmooth ( double  value)

Sets value for catSmooth

Parameters
valuethis can reduce the effect of noises in categorical features, especially for categories with few data
Returns
New LightGBMRanker object

◆ SetChunkSize()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetChunkSize ( int  value)

Sets value for chunkSize

Parameters
valueAdvanced parameter to specify the chunk size for copying Java data to native. If set too high, memory may be wasted, but if set too low, performance may be reduced during data copy.If dataset size is known beforehand, set to the number of rows in the dataset.
Returns
New LightGBMRanker object

◆ SetDataRandomSeed()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetDataRandomSeed ( int  value)

Sets value for dataRandomSeed

Parameters
valueRandom seed for sampling data to construct histogram bins.
Returns
New LightGBMRanker object

◆ SetDataTransferMode()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetDataTransferMode ( string  value)

Sets value for dataTransferMode

Parameters
valueSpecify how SynapseML transfers data from Spark to LightGBM. Values can be streaming, bulk. Default is bulk, which is the legacy mode.
Returns
New LightGBMRanker object

◆ SetDefaultListenPort()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetDefaultListenPort ( int  value)

Sets value for defaultListenPort

Parameters
valueThe default listen port on executors, used for testing
Returns
New LightGBMRanker object

◆ SetDeterministic()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetDeterministic ( bool  value)

Sets value for deterministic

Parameters
valueUsed only with cpu devide type. Setting this to true should ensure stable results when using the same data and the same parameters. Note: setting this to true may slow down training. To avoid potential instability due to numerical issues, please set force_col_wise=true or force_row_wise=true when setting deterministic=true
Returns
New LightGBMRanker object

◆ SetDriverListenPort()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetDriverListenPort ( int  value)

Sets value for driverListenPort

Parameters
valueThe listen port on a driver. Default value is 0 (random)
Returns
New LightGBMRanker object

◆ SetDropRate()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetDropRate ( double  value)

Sets value for dropRate

Parameters
valueDropout rate: a fraction of previous trees to drop during the dropout
Returns
New LightGBMRanker object

◆ SetDropSeed()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetDropSeed ( int  value)

Sets value for dropSeed

Parameters
valueRandom seed to choose dropping models. Only used in dart.
Returns
New LightGBMRanker object

◆ SetEarlyStoppingRound()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetEarlyStoppingRound ( int  value)

Sets value for earlyStoppingRound

Parameters
valueEarly stopping round
Returns
New LightGBMRanker object

◆ SetEvalAt()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetEvalAt ( int[]  value)

Sets value for evalAt

Parameters
valueNDCG and MAP evaluation positions, separated by comma
Returns
New LightGBMRanker object

◆ SetExecutionMode()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetExecutionMode ( string  value)

Sets value for executionMode

Parameters
valueDeprecated. Please use dataTransferMode.
Returns
New LightGBMRanker object

◆ SetExtraSeed()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetExtraSeed ( int  value)

Sets value for extraSeed

Parameters
valueRandom seed for selecting threshold when extra_trees is true
Returns
New LightGBMRanker object

◆ SetFeatureFraction()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetFeatureFraction ( double  value)

Sets value for featureFraction

Parameters
valueFeature fraction
Returns
New LightGBMRanker object

◆ SetFeatureFractionByNode()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetFeatureFractionByNode ( double  value)

Sets value for featureFractionByNode

Parameters
valueFeature fraction by node
Returns
New LightGBMRanker object

◆ SetFeatureFractionSeed()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetFeatureFractionSeed ( int  value)

Sets value for featureFractionSeed

Parameters
valueFeature fraction seed
Returns
New LightGBMRanker object

◆ SetFeaturesCol()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetFeaturesCol ( string  value)

Sets value for featuresCol

Parameters
valuefeatures column name
Returns
New LightGBMRanker object

◆ SetFeaturesShapCol()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetFeaturesShapCol ( string  value)

Sets value for featuresShapCol

Parameters
valueOutput SHAP vector column name after prediction containing the feature contribution values
Returns
New LightGBMRanker object

◆ SetFobj()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetFobj ( object  value)

Sets value for fobj

Parameters
valueCustomized objective function. Should accept two parameters: preds, train_data, and return (grad, hess).
Returns
New LightGBMRanker object

◆ SetGroupCol()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetGroupCol ( string  value)

Sets value for groupCol

Parameters
valueThe name of the group column
Returns
New LightGBMRanker object

◆ SetImprovementTolerance()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetImprovementTolerance ( double  value)

Sets value for improvementTolerance

Parameters
valueTolerance to consider improvement in metric
Returns
New LightGBMRanker object

◆ SetInitScoreCol()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetInitScoreCol ( string  value)

Sets value for initScoreCol

Parameters
valueThe name of the initial score column, used for continued training
Returns
New LightGBMRanker object

◆ SetIsEnableSparse()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetIsEnableSparse ( bool  value)

Sets value for isEnableSparse

Parameters
valueUsed to enable/disable sparse optimization
Returns
New LightGBMRanker object

◆ SetIsProvideTrainingMetric()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetIsProvideTrainingMetric ( bool  value)

Sets value for isProvideTrainingMetric

Parameters
valueWhether output metric result over training dataset.
Returns
New LightGBMRanker object

◆ SetLabelCol()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetLabelCol ( string  value)

Sets value for labelCol

Parameters
valuelabel column name
Returns
New LightGBMRanker object

◆ SetLabelGain()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetLabelGain ( double[]  value)

Sets value for labelGain

Parameters
valuegraded relevance for each label in NDCG
Returns
New LightGBMRanker object

◆ SetLambdaL1()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetLambdaL1 ( double  value)

Sets value for lambdaL1

Parameters
valueL1 regularization
Returns
New LightGBMRanker object

◆ SetLambdaL2()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetLambdaL2 ( double  value)

Sets value for lambdaL2

Parameters
valueL2 regularization
Returns
New LightGBMRanker object

◆ SetLeafPredictionCol()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetLeafPredictionCol ( string  value)

Sets value for leafPredictionCol

Parameters
valuePredicted leaf indices's column name
Returns
New LightGBMRanker object

◆ SetLearningRate()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetLearningRate ( double  value)

Sets value for learningRate

Parameters
valueLearning rate or shrinkage rate
Returns
New LightGBMRanker object

◆ SetMatrixType()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetMatrixType ( string  value)

Sets value for matrixType

Parameters
valueAdvanced parameter to specify whether the native lightgbm matrix constructed should be sparse or dense. Values can be auto, sparse or dense. Default value is auto, which samples first ten rows to determine type.
Returns
New LightGBMRanker object

◆ SetMaxBin()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetMaxBin ( int  value)

Sets value for maxBin

Parameters
valueMax bin
Returns
New LightGBMRanker object

◆ SetMaxBinByFeature()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetMaxBinByFeature ( int[]  value)

Sets value for maxBinByFeature

Parameters
valueMax number of bins for each feature
Returns
New LightGBMRanker object

◆ SetMaxCatThreshold()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetMaxCatThreshold ( int  value)

Sets value for maxCatThreshold

Parameters
valuelimit number of split points considered for categorical features
Returns
New LightGBMRanker object

◆ SetMaxCatToOnehot()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetMaxCatToOnehot ( int  value)

Sets value for maxCatToOnehot

Parameters
valuewhen number of categories of one feature smaller than or equal to this, one-vs-other split algorithm will be used
Returns
New LightGBMRanker object

◆ SetMaxDeltaStep()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetMaxDeltaStep ( double  value)

Sets value for maxDeltaStep

Parameters
valueUsed to limit the max output of tree leaves
Returns
New LightGBMRanker object

◆ SetMaxDepth()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetMaxDepth ( int  value)

Sets value for maxDepth

Parameters
valueMax depth
Returns
New LightGBMRanker object

◆ SetMaxDrop()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetMaxDrop ( int  value)

Sets value for maxDrop

Parameters
valueMax number of dropped trees during one boosting iteration
Returns
New LightGBMRanker object

◆ SetMaxNumClasses()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetMaxNumClasses ( int  value)

Sets value for maxNumClasses

Parameters
valueNumber of max classes to infer numClass in multi-class classification.
Returns
New LightGBMRanker object

◆ SetMaxPosition()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetMaxPosition ( int  value)

Sets value for maxPosition

Parameters
valueoptimized NDCG at this position
Returns
New LightGBMRanker object

◆ SetMaxStreamingOMPThreads()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetMaxStreamingOMPThreads ( int  value)

Sets value for maxStreamingOMPThreads

Parameters
valueMaximum number of OpenMP threads used by a LightGBM thread. Used only for thread-safe buffer allocation. Use -1 to use OpenMP default, but in a Spark environment it's best to set a fixed value.
Returns
New LightGBMRanker object

◆ SetMetric()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetMetric ( string  value)

Sets value for metric

Parameters
valueMetrics to be evaluated on the evaluation data. Options are: empty string or not specified means that metric corresponding to specified objective will be used (this is possible only for pre-defined objective functions, otherwise no evaluation metric will be added). None (string, not a None value) means that no metric will be registered, aliases: na, null, custom. l1, absolute loss, aliases: mean_absolute_error, mae, regression_l1. l2, square loss, aliases: mean_squared_error, mse, regression_l2, regression. rmse, root square loss, aliases: root_mean_squared_error, l2_root. quantile, Quantile regression. mape, MAPE loss, aliases: mean_absolute_percentage_error. huber, Huber loss. fair, Fair loss. poisson, negative log-likelihood for Poisson regression. gamma, negative log-likelihood for Gamma regression. gamma_deviance, residual deviance for Gamma regression. tweedie, negative log-likelihood for Tweedie regression. ndcg, NDCG, aliases: lambdarank. map, MAP, aliases: mean_average_precision. auc, AUC. binary_logloss, log loss, aliases: binary. binary_error, for one sample: 0 for correct classification, 1 for error classification. multi_logloss, log loss for multi-class classification, aliases: multiclass, softmax, multiclassova, multiclass_ova, ova, ovr. multi_error, error rate for multi-class classification. cross_entropy, cross-entropy (with optional linear weights), aliases: xentropy. cross_entropy_lambda, intensity-weighted cross-entropy, aliases: xentlambda. kullback_leibler, Kullback-Leibler divergence, aliases: kldiv.
Returns
New LightGBMRanker object

◆ SetMicroBatchSize()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetMicroBatchSize ( int  value)

Sets value for microBatchSize

Parameters
valueSpecify how many elements are sent in a streaming micro-batch.
Returns
New LightGBMRanker object

◆ SetMinDataInLeaf()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetMinDataInLeaf ( int  value)

Sets value for minDataInLeaf

Parameters
valueMinimal number of data in one leaf. Can be used to deal with over-fitting.
Returns
New LightGBMRanker object

◆ SetMinDataPerBin()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetMinDataPerBin ( int  value)

Sets value for minDataPerBin

Parameters
valueMinimal number of data inside one bin
Returns
New LightGBMRanker object

◆ SetMinDataPerGroup()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetMinDataPerGroup ( int  value)

Sets value for minDataPerGroup

Parameters
valueminimal number of data per categorical group
Returns
New LightGBMRanker object

◆ SetMinGainToSplit()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetMinGainToSplit ( double  value)

Sets value for minGainToSplit

Parameters
valueThe minimal gain to perform split
Returns
New LightGBMRanker object

◆ SetMinSumHessianInLeaf()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetMinSumHessianInLeaf ( double  value)

Sets value for minSumHessianInLeaf

Parameters
valueMinimal sum hessian in one leaf
Returns
New LightGBMRanker object

◆ SetModelString()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetModelString ( string  value)

Sets value for modelString

Parameters
valueLightGBM model to retrain
Returns
New LightGBMRanker object

◆ SetMonotoneConstraints()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetMonotoneConstraints ( int[]  value)

Sets value for monotoneConstraints

Parameters
valueused for constraints of monotonic features. 1 means increasing, -1 means decreasing, 0 means non-constraint. Specify all features in order.
Returns
New LightGBMRanker object

◆ SetMonotoneConstraintsMethod()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetMonotoneConstraintsMethod ( string  value)

Sets value for monotoneConstraintsMethod

Parameters
valueMonotone constraints method. basic, intermediate, or advanced.
Returns
New LightGBMRanker object

◆ SetMonotonePenalty()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetMonotonePenalty ( double  value)

Sets value for monotonePenalty

Parameters
valueA penalization parameter X forbids any monotone splits on the first X (rounded down) level(s) of the tree.
Returns
New LightGBMRanker object

◆ SetNegBaggingFraction()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetNegBaggingFraction ( double  value)

Sets value for negBaggingFraction

Parameters
valueNegative Bagging fraction
Returns
New LightGBMRanker object

◆ SetNumBatches()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetNumBatches ( int  value)

Sets value for numBatches

Parameters
valueIf greater than 0, splits data into separate batches during training
Returns
New LightGBMRanker object

◆ SetNumIterations()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetNumIterations ( int  value)

Sets value for numIterations

Parameters
valueNumber of iterations, LightGBM constructs num_class * num_iterations trees
Returns
New LightGBMRanker object

◆ SetNumLeaves()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetNumLeaves ( int  value)

Sets value for numLeaves

Parameters
valueNumber of leaves
Returns
New LightGBMRanker object

◆ SetNumTasks()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetNumTasks ( int  value)

Sets value for numTasks

Parameters
valueAdvanced parameter to specify the number of tasks. SynapseML tries to guess this based on cluster configuration, but this parameter can be used to override.
Returns
New LightGBMRanker object

◆ SetNumThreads()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetNumThreads ( int  value)

Sets value for numThreads

Parameters
valueNumber of threads per executor for LightGBM. For the best speed, set this to the number of real CPU cores.
Returns
New LightGBMRanker object

◆ SetObjective()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetObjective ( string  value)

Sets value for objective

Parameters
valueThe Objective. For regression applications, this can be: regression_l2, regression_l1, huber, fair, poisson, quantile, mape, gamma or tweedie. For classification applications, this can be: binary, multiclass, or multiclassova.
Returns
New LightGBMRanker object

◆ SetObjectiveSeed()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetObjectiveSeed ( int  value)

Sets value for objectiveSeed

Parameters
valueRandom seed for objectives, if random process is needed. Currently used only for rank_xendcg objective.
Returns
New LightGBMRanker object

◆ SetOtherRate()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetOtherRate ( double  value)

Sets value for otherRate

Parameters
valueThe retain ratio of small gradient data. Only used in goss.
Returns
New LightGBMRanker object

◆ SetParallelism()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetParallelism ( string  value)

Sets value for parallelism

Parameters
valueTree learner parallelism, can be set to data_parallel or voting_parallel
Returns
New LightGBMRanker object

◆ SetPassThroughArgs()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetPassThroughArgs ( string  value)

Sets value for passThroughArgs

Parameters
valueDirect string to pass through to LightGBM library (appended with other explicitly set params). Will override any parameters given with explicit setters. Can include multiple parameters in one string. e.g., force_row_wise=true
Returns
New LightGBMRanker object

◆ SetPosBaggingFraction()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetPosBaggingFraction ( double  value)

Sets value for posBaggingFraction

Parameters
valuePositive Bagging fraction
Returns
New LightGBMRanker object

◆ SetPredictDisableShapeCheck()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetPredictDisableShapeCheck ( bool  value)

Sets value for predictDisableShapeCheck

Parameters
valuecontrol whether or not LightGBM raises an error when you try to predict on data with a different number of features than the training data
Returns
New LightGBMRanker object

◆ SetPredictionCol()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetPredictionCol ( string  value)

Sets value for predictionCol

Parameters
valueprediction column name
Returns
New LightGBMRanker object

◆ SetReferenceDataset()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetReferenceDataset ( object  value)

Sets value for referenceDataset

Parameters
valueThe reference Dataset that was used for the fit. If using samplingMode=custom, this must be set before fit().
Returns
New LightGBMRanker object

◆ SetRepartitionByGroupingColumn()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetRepartitionByGroupingColumn ( bool  value)

Sets value for repartitionByGroupingColumn

Parameters
valueRepartition training data according to grouping column, on by default.
Returns
New LightGBMRanker object

◆ SetSamplingMode()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetSamplingMode ( string  value)

Sets value for samplingMode

Parameters
valueData sampling for streaming mode. Sampled data is used to define bins. 'global': sample from all data, 'subset': sample from first N rows, or 'fixed': Take first N rows as sample.Values can be global, subset, or fixed. Default is subset.
Returns
New LightGBMRanker object

◆ SetSamplingSubsetSize()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetSamplingSubsetSize ( int  value)

Sets value for samplingSubsetSize

Parameters
valueSpecify subset size N for the sampling mode 'subset'. 'binSampleCount' rows will be chosen from the first N values of the dataset. Subset can be used when rows are expected to be random and data is huge.
Returns
New LightGBMRanker object

◆ SetSeed()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetSeed ( int  value)

Sets value for seed

Parameters
valueMain seed, used to generate other seeds
Returns
New LightGBMRanker object

◆ SetSkipDrop()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetSkipDrop ( double  value)

Sets value for skipDrop

Parameters
valueProbability of skipping the dropout procedure during a boosting iteration
Returns
New LightGBMRanker object

◆ SetSlotNames()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetSlotNames ( string[]  value)

Sets value for slotNames

Parameters
valueList of slot names in the features column
Returns
New LightGBMRanker object

◆ SetTimeout()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetTimeout ( double  value)

Sets value for timeout

Parameters
valueTimeout in seconds
Returns
New LightGBMRanker object

◆ SetTopK()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetTopK ( int  value)

Sets value for topK

Parameters
valueThe top_k value used in Voting parallel, set this to larger value for more accurate result, but it will slow down the training speed. It should be greater than 0
Returns
New LightGBMRanker object

◆ SetTopRate()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetTopRate ( double  value)

Sets value for topRate

Parameters
valueThe retain ratio of large gradient data. Only used in goss.
Returns
New LightGBMRanker object

◆ SetUniformDrop()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetUniformDrop ( bool  value)

Sets value for uniformDrop

Parameters
valueSet this to true to use uniform drop in dart mode
Returns
New LightGBMRanker object

◆ SetUseBarrierExecutionMode()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetUseBarrierExecutionMode ( bool  value)

Sets value for useBarrierExecutionMode

Parameters
valueBarrier execution mode which uses a barrier stage, off by default.
Returns
New LightGBMRanker object

◆ SetUseMissing()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetUseMissing ( bool  value)

Sets value for useMissing

Parameters
valueSet this to false to disable the special handle of missing value
Returns
New LightGBMRanker object

◆ SetUseSingleDatasetMode()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetUseSingleDatasetMode ( bool  value)

Sets value for useSingleDatasetMode

Parameters
valueUse single dataset execution mode to create a single native dataset per executor (singleton) to reduce memory and communication overhead.
Returns
New LightGBMRanker object

◆ SetValidationIndicatorCol()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetValidationIndicatorCol ( string  value)

Sets value for validationIndicatorCol

Parameters
valueIndicates whether the row is for training or validation
Returns
New LightGBMRanker object

◆ SetVerbosity()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetVerbosity ( int  value)

Sets value for verbosity

Parameters
valueVerbosity where lt 0 is Fatal, eq 0 is Error, eq 1 is Info, gt 1 is Debug
Returns
New LightGBMRanker object

◆ SetWeightCol()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetWeightCol ( string  value)

Sets value for weightCol

Parameters
valueThe name of the weight column
Returns
New LightGBMRanker object

◆ SetXGBoostDartMode()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetXGBoostDartMode ( bool  value)

Sets value for xGBoostDartMode

Parameters
valueSet this to true to use xgboost dart mode
Returns
New LightGBMRanker object

◆ SetZeroAsMissing()

LightGBMRanker Synapse.ML.Lightgbm.LightGBMRanker.SetZeroAsMissing ( bool  value)

Sets value for zeroAsMissing

Parameters
valueSet to true to treat all zero as missing values (including the unshown values in LibSVM / sparse matrices). Set to false to use na for representing missing values
Returns
New LightGBMRanker object

The documentation for this class was generated from the following file: