Synapseml  1.0.2
Public Member Functions | Static Public Member Functions | List of all members
Synapse.ML.Train.TrainRegressor Class Reference

TrainRegressor implements TrainRegressor More...

Inheritance diagram for Synapse.ML.Train.TrainRegressor:
Inheritance graph
[legend]
Collaboration diagram for Synapse.ML.Train.TrainRegressor:
Collaboration graph
[legend]

Public Member Functions

 TrainRegressor ()
 Creates a TrainRegressor without any parameters. More...
 
 TrainRegressor (string uid)
 Creates a TrainRegressor with a UID that is used to give the TrainRegressor a unique ID. More...
 
TrainRegressor SetFeaturesCol (string value)
 Sets value for featuresCol More...
 
TrainRegressor SetInputCols (string[] value)
 Sets value for inputCols More...
 
TrainRegressor SetLabelCol (string value)
 Sets value for labelCol More...
 
TrainRegressor SetModel< M > (JavaEstimator< M > value)
 Sets value for model More...
 
TrainRegressor SetNumFeatures (int value)
 Sets value for numFeatures More...
 
string GetFeaturesCol ()
 Gets featuresCol value More...
 
string[] GetInputCols ()
 Gets inputCols value More...
 
string GetLabelCol ()
 Gets labelCol value More...
 
IEstimator< object > GetModel ()
 Gets model value More...
 
int GetNumFeatures ()
 Gets numFeatures value More...
 
override TrainedRegressorModel Fit (DataFrame dataset)
 Fits a model to the input data. More...
 
void Save (string path)
 Saves the object so that it can be loaded later using Load. Note that these objects can be shared with Scala by Loading or Saving in Scala. More...
 
JavaMLWriter Write ()
 
Returns
a JavaMLWriter instance for this ML instance.

 
JavaMLReader< TrainRegressorRead ()
 Get the corresponding JavaMLReader instance. More...
 

Static Public Member Functions

static TrainRegressor Load (string path)
 Loads the TrainRegressor that was previously saved using Save(string). More...
 

Detailed Description

TrainRegressor implements TrainRegressor

Constructor & Destructor Documentation

◆ TrainRegressor() [1/2]

Synapse.ML.Train.TrainRegressor.TrainRegressor ( )
inline

Creates a TrainRegressor without any parameters.

◆ TrainRegressor() [2/2]

Synapse.ML.Train.TrainRegressor.TrainRegressor ( string  uid)
inline

Creates a TrainRegressor with a UID that is used to give the TrainRegressor a unique ID.

Parameters
uidAn immutable unique ID for the object and its derivatives.

Member Function Documentation

◆ Fit()

override TrainedRegressorModel Synapse.ML.Train.TrainRegressor.Fit ( DataFrame  dataset)

Fits a model to the input data.

Parameters
datasetThe DataFrame to fit the model to.
Returns
TrainedRegressorModel

◆ GetFeaturesCol()

string Synapse.ML.Train.TrainRegressor.GetFeaturesCol ( )

Gets featuresCol value

Returns
featuresCol: The name of the features column

◆ GetInputCols()

string [] Synapse.ML.Train.TrainRegressor.GetInputCols ( )

Gets inputCols value

Returns
inputCols: The names of the input columns

◆ GetLabelCol()

string Synapse.ML.Train.TrainRegressor.GetLabelCol ( )

Gets labelCol value

Returns
labelCol: The name of the label column

◆ GetModel()

IEstimator<object> Synapse.ML.Train.TrainRegressor.GetModel ( )
inline

Gets model value

Returns
model: Regressor to run

◆ GetNumFeatures()

int Synapse.ML.Train.TrainRegressor.GetNumFeatures ( )

Gets numFeatures value

Returns
numFeatures: Number of features to hash to

◆ Load()

static TrainRegressor Synapse.ML.Train.TrainRegressor.Load ( string  path)
static

Loads the TrainRegressor that was previously saved using Save(string).

Parameters
pathThe path the previous TrainRegressor was saved to
Returns
New TrainRegressor object, loaded from path.

◆ Read()

JavaMLReader<TrainRegressor> Synapse.ML.Train.TrainRegressor.Read ( )

Get the corresponding JavaMLReader instance.

Returns
an JavaMLReader<TrainRegressor> instance for this ML instance.

◆ Save()

void Synapse.ML.Train.TrainRegressor.Save ( string  path)

Saves the object so that it can be loaded later using Load. Note that these objects can be shared with Scala by Loading or Saving in Scala.

Parameters
pathThe path to save the object to

◆ SetFeaturesCol()

TrainRegressor Synapse.ML.Train.TrainRegressor.SetFeaturesCol ( string  value)

Sets value for featuresCol

Parameters
valueThe name of the features column
Returns
New TrainRegressor object

◆ SetInputCols()

TrainRegressor Synapse.ML.Train.TrainRegressor.SetInputCols ( string[]  value)

Sets value for inputCols

Parameters
valueThe names of the input columns
Returns
New TrainRegressor object

◆ SetLabelCol()

TrainRegressor Synapse.ML.Train.TrainRegressor.SetLabelCol ( string  value)

Sets value for labelCol

Parameters
valueThe name of the label column
Returns
New TrainRegressor object

◆ SetModel< M >()

TrainRegressor Synapse.ML.Train.TrainRegressor.SetModel< M > ( JavaEstimator< M >  value)

Sets value for model

Parameters
valueRegressor to run
Returns
New TrainRegressor object
Type Constraints
M :JavaModel<M> 
M :WrapAsTrainRegressor 
M :Reference.Invoke 
M :setModel 
M :object 
M :value 

◆ SetNumFeatures()

TrainRegressor Synapse.ML.Train.TrainRegressor.SetNumFeatures ( int  value)

Sets value for numFeatures

Parameters
valueNumber of features to hash to
Returns
New TrainRegressor object

The documentation for this class was generated from the following file: