c
com.microsoft.azure.synapse.ml.causal
SyntheticControlEstimator
Companion object SyntheticControlEstimator
class SyntheticControlEstimator extends BaseDiffInDiffEstimator with SyntheticEstimator with SyntheticEstimatorParams with ComplexParamsWritable with Wrappable
Linear Supertypes
Ordering
- Alphabetic
- By Inheritance
Inherited
- SyntheticControlEstimator
- Wrappable
- DotnetWrappable
- RWrappable
- PythonWrappable
- BaseWrappable
- ComplexParamsWritable
- MLWritable
- SyntheticEstimatorParams
- HasTol
- HasStepSize
- HasMaxIter
- HasTimeCol
- HasUnitCol
- SyntheticEstimator
- SynapseMLLogging
- BaseDiffInDiffEstimator
- DiffInDiffEstimatorParams
- HasPostTreatmentCol
- HasOutcomeCol
- HasTreatmentCol
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
Visibility
- Public
- All
Instance Constructors
Value Members
-
final
def
clear(param: Param[_]): SyntheticControlEstimator.this.type
- Definition Classes
- Params
-
def
copy(extra: ParamMap): Estimator[DiffInDiffModel]
- Definition Classes
- BaseDiffInDiffEstimator → Estimator → PipelineStage → Params
-
def
dotnetAdditionalMethods: String
- Definition Classes
- DotnetWrappable
-
final
val
epsilon: DoubleParam
- Definition Classes
- SyntheticEstimatorParams
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
def
fit(dataset: Dataset[_]): DiffInDiffModel
- Definition Classes
- SyntheticControlEstimator → Estimator
-
def
fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[DiffInDiffModel]
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], paramMap: ParamMap): DiffInDiffModel
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DiffInDiffModel
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" ) @varargs()
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getEpsilon: Double
- Definition Classes
- SyntheticEstimatorParams
-
def
getHandleMissingOutcome: String
- Definition Classes
- SyntheticEstimatorParams
-
def
getLocalSolverThreshold: Long
- Definition Classes
- SyntheticEstimatorParams
-
final
def
getMaxIter: Int
- Definition Classes
- HasMaxIter
-
def
getNumIterNoChange: Int
- Definition Classes
- SyntheticEstimatorParams
-
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
def
getOutcomeCol: String
- Definition Classes
- HasOutcomeCol
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
-
def
getParamInfo(p: Param[_]): ParamInfo[_]
- Definition Classes
- BaseWrappable
-
def
getPostTreatmentCol: String
- Definition Classes
- HasPostTreatmentCol
-
final
def
getStepSize: Double
- Definition Classes
- HasStepSize
-
def
getTimeCol: String
- Definition Classes
- HasTimeCol
-
final
def
getTol: Double
- Definition Classes
- HasTol
-
def
getTreatmentCol: String
- Definition Classes
- HasTreatmentCol
-
def
getUnitCol: String
- Definition Classes
- HasUnitCol
-
final
val
handleMissingOutcome: Param[String]
- Definition Classes
- SyntheticEstimatorParams
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
val
localSolverThreshold: LongParam
Param for deciding whether to collect part of data on driver node and solve the constrained least square problems locally on driver.
Param for deciding whether to collect part of data on driver node and solve the constrained least square problems locally on driver.
- Definition Classes
- SyntheticEstimatorParams
-
def
logClass(featureName: String): Unit
- Definition Classes
- SynapseMLLogging
-
def
logFit[T](f: ⇒ T, columns: Int): T
- Definition Classes
- SynapseMLLogging
-
def
logTransform[T](f: ⇒ T, columns: Int): T
- Definition Classes
- SynapseMLLogging
-
def
logVerb[T](verb: String, f: ⇒ T, columns: Option[Int] = None): T
- Definition Classes
- SynapseMLLogging
-
def
makeDotnetFile(conf: CodegenConfig): Unit
- Definition Classes
- DotnetWrappable
-
def
makePyFile(conf: CodegenConfig): Unit
- Definition Classes
- PythonWrappable
-
def
makeRFile(conf: CodegenConfig): Unit
- Definition Classes
- RWrappable
-
implicit
val
matrixEntryEncoder: Encoder[MatrixEntry]
- Definition Classes
- SyntheticEstimator
-
implicit
val
matrixOps: DMatrixOps.type
- Definition Classes
- SyntheticEstimator
-
final
val
maxIter: IntParam
- Definition Classes
- HasMaxIter
-
final
val
numIterNoChange: IntParam
- Definition Classes
- SyntheticEstimatorParams
-
val
outcomeCol: Param[String]
- Definition Classes
- HasOutcomeCol
-
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
final
val
postTreatmentCol: Param[String]
- Definition Classes
- HasPostTreatmentCol
-
def
pyAdditionalMethods: String
- Definition Classes
- PythonWrappable
-
def
pyInitFunc(): String
- Definition Classes
- PythonWrappable
-
def
save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
final
def
set[T](param: Param[T], value: T): SyntheticControlEstimator.this.type
- Definition Classes
- Params
-
def
setEpsilon(value: Double): SyntheticControlEstimator.this.type
- Definition Classes
- SyntheticEstimatorParams
-
def
setHandleMissingOutcome(value: String): SyntheticControlEstimator.this.type
- Definition Classes
- SyntheticEstimatorParams
-
def
setLocalSolverThreshold(value: Long): SyntheticControlEstimator.this.type
- Definition Classes
- SyntheticEstimatorParams
-
def
setMaxIter(value: Int): SyntheticControlEstimator.this.type
- Definition Classes
- SyntheticEstimatorParams
-
def
setNumIterNoChange(value: Int): SyntheticControlEstimator.this.type
- Definition Classes
- SyntheticEstimatorParams
-
def
setOutcomeCol(value: String): SyntheticControlEstimator.this.type
Set name of the column which will be used as outcome
Set name of the column which will be used as outcome
- Definition Classes
- HasOutcomeCol
-
def
setPostTreatmentCol(value: String): SyntheticControlEstimator.this.type
Set name of the column which tells whether the outcome is measured post treatment.
Set name of the column which tells whether the outcome is measured post treatment.
- Definition Classes
- HasPostTreatmentCol
-
def
setStepSize(value: Double): SyntheticControlEstimator.this.type
- Definition Classes
- SyntheticEstimatorParams
-
def
setTimeCol(value: String): SyntheticControlEstimator.this.type
- Definition Classes
- HasTimeCol
-
def
setTol(value: Double): SyntheticControlEstimator.this.type
- Definition Classes
- SyntheticEstimatorParams
-
def
setTreatmentCol(value: String): SyntheticControlEstimator.this.type
Set name of the column which will be used as treatment
Set name of the column which will be used as treatment
- Definition Classes
- HasTreatmentCol
-
def
setUnitCol(value: String): SyntheticControlEstimator.this.type
- Definition Classes
- HasUnitCol
-
val
stepSize: DoubleParam
- Definition Classes
- HasStepSize
-
final
val
timeCol: Param[String]
- Definition Classes
- HasTimeCol
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
final
val
tol: DoubleParam
- Definition Classes
- HasTol
-
def
transformSchema(schema: StructType): StructType
- Definition Classes
- BaseDiffInDiffEstimator → PipelineStage
-
val
treatmentCol: Param[String]
- Definition Classes
- HasTreatmentCol
-
val
uid: String
- Definition Classes
- SyntheticControlEstimator → SynapseMLLogging → BaseDiffInDiffEstimator → Identifiable
-
final
val
unitCol: Param[String]
- Definition Classes
- HasUnitCol
-
implicit
val
vectorEntryEncoder: Encoder[VectorEntry]
- Definition Classes
- SyntheticEstimator
-
implicit
val
vectorOps: DVectorOps.type
- Definition Classes
- SyntheticEstimator
-
def
write: MLWriter
- Definition Classes
- ComplexParamsWritable → MLWritable