Synapseml  1.0.4
All Classes Namespaces Functions
Public Member Functions | Static Public Member Functions | List of all members
Synapse.ML.Train.TrainedRegressorModel Class Reference

TrainedRegressorModel implements TrainedRegressorModel More...

Inheritance diagram for Synapse.ML.Train.TrainedRegressorModel:
Inheritance graph
[legend]
Collaboration diagram for Synapse.ML.Train.TrainedRegressorModel:
Collaboration graph
[legend]

Public Member Functions

 TrainedRegressorModel ()
 Creates a TrainedRegressorModel without any parameters. More...
 
 TrainedRegressorModel (string uid)
 Creates a TrainedRegressorModel with a UID that is used to give the TrainedRegressorModel a unique ID. More...
 
TrainedRegressorModel SetFeaturesCol (string value)
 Sets value for featuresCol More...
 
TrainedRegressorModel SetLabelCol (string value)
 Sets value for labelCol More...
 
TrainedRegressorModel SetModel (JavaTransformer value)
 Sets value for model More...
 
string GetFeaturesCol ()
 Gets featuresCol value More...
 
string GetLabelCol ()
 Gets labelCol value More...
 
JavaTransformer GetModel ()
 Gets model value More...
 
void Save (string path)
 Saves the object so that it can be loaded later using Load. Note that these objects can be shared with Scala by Loading or Saving in Scala. More...
 
JavaMLWriter Write ()
 
Returns
a JavaMLWriter instance for this ML instance.

 
JavaMLReader< TrainedRegressorModelRead ()
 Get the corresponding JavaMLReader instance. More...
 

Static Public Member Functions

static TrainedRegressorModel Load (string path)
 Loads the TrainedRegressorModel that was previously saved using Save(string). More...
 

Detailed Description

TrainedRegressorModel implements TrainedRegressorModel

Constructor & Destructor Documentation

◆ TrainedRegressorModel() [1/2]

Synapse.ML.Train.TrainedRegressorModel.TrainedRegressorModel ( )
inline

Creates a TrainedRegressorModel without any parameters.

◆ TrainedRegressorModel() [2/2]

Synapse.ML.Train.TrainedRegressorModel.TrainedRegressorModel ( string  uid)
inline

Creates a TrainedRegressorModel with a UID that is used to give the TrainedRegressorModel a unique ID.

Parameters
uidAn immutable unique ID for the object and its derivatives.

Member Function Documentation

◆ GetFeaturesCol()

string Synapse.ML.Train.TrainedRegressorModel.GetFeaturesCol ( )

Gets featuresCol value

Returns
featuresCol: The name of the features column

◆ GetLabelCol()

string Synapse.ML.Train.TrainedRegressorModel.GetLabelCol ( )

Gets labelCol value

Returns
labelCol: The name of the label column

◆ GetModel()

JavaTransformer Synapse.ML.Train.TrainedRegressorModel.GetModel ( )
inline

Gets model value

Returns
model: model produced by training

◆ Load()

static TrainedRegressorModel Synapse.ML.Train.TrainedRegressorModel.Load ( string  path)
static

Loads the TrainedRegressorModel that was previously saved using Save(string).

Parameters
pathThe path the previous TrainedRegressorModel was saved to
Returns
New TrainedRegressorModel object, loaded from path.

◆ Read()

JavaMLReader<TrainedRegressorModel> Synapse.ML.Train.TrainedRegressorModel.Read ( )

Get the corresponding JavaMLReader instance.

Returns
an JavaMLReader<TrainedRegressorModel> instance for this ML instance.

◆ Save()

void Synapse.ML.Train.TrainedRegressorModel.Save ( string  path)

Saves the object so that it can be loaded later using Load. Note that these objects can be shared with Scala by Loading or Saving in Scala.

Parameters
pathThe path to save the object to

◆ SetFeaturesCol()

TrainedRegressorModel Synapse.ML.Train.TrainedRegressorModel.SetFeaturesCol ( string  value)

Sets value for featuresCol

Parameters
valueThe name of the features column
Returns
New TrainedRegressorModel object

◆ SetLabelCol()

TrainedRegressorModel Synapse.ML.Train.TrainedRegressorModel.SetLabelCol ( string  value)

Sets value for labelCol

Parameters
valueThe name of the label column
Returns
New TrainedRegressorModel object

◆ SetModel()

TrainedRegressorModel Synapse.ML.Train.TrainedRegressorModel.SetModel ( JavaTransformer  value)

Sets value for model

Parameters
valuemodel produced by training
Returns
New TrainedRegressorModel object

The documentation for this class was generated from the following file: