class TuneHyperparameters extends Estimator[TuneHyperparametersModel] with Wrappable with ComplexParamsWritable with HasEvaluationMetric with SynapseMLLogging
Tunes model hyperparameters
Allows user to specify multiple untrained models to tune using various search strategies. Currently supports cross validation with random grid search.
Linear Supertypes
Ordering
- Alphabetic
- By Inheritance
Inherited
- TuneHyperparameters
- SynapseMLLogging
- HasEvaluationMetric
- ComplexParamsWritable
- MLWritable
- Wrappable
- RWrappable
- PythonWrappable
- BaseWrappable
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
Visibility
- Public
- All
Value Members
-
final
def
clear(param: Param[_]): TuneHyperparameters.this.type
- Definition Classes
- Params
-
def
copy(extra: ParamMap): Estimator[TuneHyperparametersModel]
- Definition Classes
- TuneHyperparameters → Estimator → PipelineStage → Params
-
val
evaluationMetric: Param[String]
- Definition Classes
- HasEvaluationMetric
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
def
fit(dataset: Dataset[_]): TuneHyperparametersModel
Tunes model hyperparameters for given number of runs and returns the best model found based on evaluation metric.
Tunes model hyperparameters for given number of runs and returns the best model found based on evaluation metric.
- dataset
The input dataset to train.
- returns
The trained classification model.
- Definition Classes
- TuneHyperparameters → Estimator
-
def
fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[TuneHyperparametersModel]
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], paramMap: ParamMap): TuneHyperparametersModel
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): TuneHyperparametersModel
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" ) @varargs()
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getEvaluationMetric: String
- Definition Classes
- HasEvaluationMetric
- def getModels: Array[Estimator[_]]
- def getNumFolds: Int
- def getNumRuns: Int
-
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
- def getParallelism: Int
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
-
def
getParamInfo(p: Param[_]): ParamInfo[_]
- Definition Classes
- BaseWrappable
- def getParamSpace: ParamSpace
- def getSeed: Long
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
def
logClass(featureName: String): Unit
- Definition Classes
- SynapseMLLogging
-
def
logFit[T](f: ⇒ T, columns: Int): T
- Definition Classes
- SynapseMLLogging
-
def
logTransform[T](f: ⇒ T, columns: Int): T
- Definition Classes
- SynapseMLLogging
-
def
logVerb[T](verb: String, f: ⇒ T, columns: Option[Int] = None): T
- Definition Classes
- SynapseMLLogging
-
def
makePyFile(conf: CodegenConfig): Unit
- Definition Classes
- PythonWrappable
-
def
makeRFile(conf: CodegenConfig): Unit
- Definition Classes
- RWrappable
-
val
models: EstimatorArrayParam
Estimators to run
- val numFolds: IntParam
- val numRuns: IntParam
- val parallelism: IntParam
- val paramSpace: ParamSpaceParam
-
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
def
pyAdditionalMethods: String
- Definition Classes
- PythonWrappable
-
def
pyInitFunc(): String
- Definition Classes
- PythonWrappable
-
def
save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
- val seed: LongParam
-
final
def
set[T](param: Param[T], value: T): TuneHyperparameters.this.type
- Definition Classes
- Params
-
def
setEvaluationMetric(value: String): TuneHyperparameters.this.type
- Definition Classes
- HasEvaluationMetric
- def setModels(value: ArrayList[Estimator[_]]): TuneHyperparameters.this.type
- def setModels(value: Array[Estimator[_]]): TuneHyperparameters.this.type
- def setNumFolds(value: Int): TuneHyperparameters.this.type
- def setNumRuns(value: Int): TuneHyperparameters.this.type
- def setParallelism(value: Int): TuneHyperparameters.this.type
- def setParamSpace(value: ParamSpace): TuneHyperparameters.this.type
- def setSeed(value: Long): TuneHyperparameters.this.type
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
def
transformSchema(schema: StructType): StructType
- Definition Classes
- TuneHyperparameters → PipelineStage
- Annotations
- @DeveloperApi()
-
val
uid: String
- Definition Classes
- TuneHyperparameters → SynapseMLLogging → Identifiable
-
def
write: MLWriter
- Definition Classes
- ComplexParamsWritable → MLWritable