c
com.microsoft.azure.synapse.ml.causal
OrthoForestVariableTransformer
Companion object OrthoForestVariableTransformer
class OrthoForestVariableTransformer extends Transformer with HasOutputCol with DefaultParamsWritable with Wrappable with SynapseMLLogging
Transform the outcome residual and treatment residual.
\E_n\left[ \left(\tilde{Y} - \theta(X) \cdot \tilde{T}\right)2 \right] =
\E_n\left[ \tilde{T}2 \left(\frac{\tilde{Y}}{\tilde{T}} - \theta(X)\right)^2 \right]
The latter corresponds to a weighted regression problem, where the target label is :math:\tilde{Y}/\tilde{T}
,
the features are X
and the weight of each sample is :math:\tilde{T}^2
.
Any regressor that accepts sample weights can be used as a final model, e.g.:
Linear Supertypes
Ordering
- Alphabetic
- By Inheritance
Inherited
- OrthoForestVariableTransformer
- SynapseMLLogging
- Wrappable
- RWrappable
- PythonWrappable
- BaseWrappable
- DefaultParamsWritable
- MLWritable
- HasOutputCol
- Transformer
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
Visibility
- Public
- All
Instance Constructors
Value Members
-
final
def
clear(param: Param[_]): OrthoForestVariableTransformer.this.type
- Definition Classes
- Params
-
def
copy(extra: ParamMap): OrthoForestVariableTransformer
- Definition Classes
- OrthoForestVariableTransformer → Transformer → PipelineStage → Params
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
- final def getOutcomeResidualCol: String
-
def
getOutputCol: String
- Definition Classes
- HasOutputCol
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
-
def
getParamInfo(p: Param[_]): ParamInfo[_]
- Definition Classes
- BaseWrappable
- final def getTreatmentResidualCol: String
- final def getWeightsCol: String
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
def
logClass(featureName: String): Unit
- Definition Classes
- SynapseMLLogging
-
def
logFit[T](f: ⇒ T, columns: Int): T
- Definition Classes
- SynapseMLLogging
-
def
logTransform[T](f: ⇒ T, columns: Int): T
- Definition Classes
- SynapseMLLogging
-
def
logVerb[T](verb: String, f: ⇒ T, columns: Option[Int] = None): T
- Definition Classes
- SynapseMLLogging
-
def
makePyFile(conf: CodegenConfig): Unit
- Definition Classes
- PythonWrappable
-
def
makeRFile(conf: CodegenConfig): Unit
- Definition Classes
- RWrappable
- val outcomeResidualCol: Param[String]
-
val
outputCol: Param[String]
The name of the output column
The name of the output column
- Definition Classes
- HasOutputCol
-
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
def
pyAdditionalMethods: String
- Definition Classes
- PythonWrappable
-
def
pyInitFunc(): String
- Definition Classes
- PythonWrappable
-
def
save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
final
def
set[T](param: Param[T], value: T): OrthoForestVariableTransformer.this.type
- Definition Classes
- Params
- def setOutcomeResidualCol(value: String): OrthoForestVariableTransformer.this.type
-
def
setOutputCol(value: String): OrthoForestVariableTransformer.this.type
- Definition Classes
- HasOutputCol
- def setTreatmentResidualCol(value: String): OrthoForestVariableTransformer.this.type
- def setWeightsCol(value: String): OrthoForestVariableTransformer.this.type
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
def
transform(dataset: Dataset[_]): DataFrame
- Definition Classes
- OrthoForestVariableTransformer → Transformer
-
def
transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" )
-
def
transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" ) @varargs()
-
def
transformSchema(schema: StructType): StructType
- Definition Classes
- OrthoForestVariableTransformer → PipelineStage
- val treatmentResidualCol: Param[String]
-
val
uid: String
- Definition Classes
- OrthoForestVariableTransformer → SynapseMLLogging → Identifiable
- val weightsCol: Param[String]
-
def
write: MLWriter
- Definition Classes
- DefaultParamsWritable → MLWritable