Packages

class TextFeaturizer extends Estimator[PipelineModel] with TextFeaturizerParams with HasInputCol with HasOutputCol with SynapseMLLogging

Featurize text.

Linear Supertypes
SynapseMLLogging, HasOutputCol, HasInputCol, TextFeaturizerParams, DefaultParamsWritable, MLWritable, Wrappable, RWrappable, PythonWrappable, BaseWrappable, Estimator[PipelineModel], PipelineStage, Logging, Params, Serializable, Serializable, Identifiable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. TextFeaturizer
  2. SynapseMLLogging
  3. HasOutputCol
  4. HasInputCol
  5. TextFeaturizerParams
  6. DefaultParamsWritable
  7. MLWritable
  8. Wrappable
  9. RWrappable
  10. PythonWrappable
  11. BaseWrappable
  12. Estimator
  13. PipelineStage
  14. Logging
  15. Params
  16. Serializable
  17. Serializable
  18. Identifiable
  19. AnyRef
  20. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new TextFeaturizer()
  2. new TextFeaturizer(uid: String)

    uid

    The id of the module

Value Members

  1. val binary: BooleanParam

    All nonnegative word counts are set to 1 when set to true

    All nonnegative word counts are set to 1 when set to true

    Definition Classes
    TextFeaturizerParams
  2. val caseSensitiveStopWords: BooleanParam

    Indicates whether a case sensitive comparison is performed on stop words.

    Indicates whether a case sensitive comparison is performed on stop words.

    Definition Classes
    TextFeaturizerParams
  3. final def clear(param: Param[_]): TextFeaturizer.this.type
    Definition Classes
    Params
  4. def copy(extra: ParamMap): TextFeaturizer.this.type
    Definition Classes
    TextFeaturizer → Estimator → PipelineStage → Params
  5. val defaultStopWordLanguage: Param[String]

    Specify the language to use for stop word removal.

    Specify the language to use for stop word removal. The Use the custom setting when using the stopWords input

    Definition Classes
    TextFeaturizerParams
  6. def explainParam(param: Param[_]): String
    Definition Classes
    Params
  7. def explainParams(): String
    Definition Classes
    Params
  8. final def extractParamMap(): ParamMap
    Definition Classes
    Params
  9. final def extractParamMap(extra: ParamMap): ParamMap
    Definition Classes
    Params
  10. def fit(dataset: Dataset[_]): PipelineModel
    Definition Classes
    TextFeaturizer → Estimator
  11. def fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[PipelineModel]
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  12. def fit(dataset: Dataset[_], paramMap: ParamMap): PipelineModel
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  13. def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): PipelineModel
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" ) @varargs()
  14. final def get[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  15. final def getBinary: Boolean

    Definition Classes
    TextFeaturizerParams
  16. final def getCaseSensitiveStopWords: Boolean

    Definition Classes
    TextFeaturizerParams
  17. final def getDefault[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  18. final def getDefaultStopWordLanguage: String

    Definition Classes
    TextFeaturizerParams
  19. def getInputCol: String

    Definition Classes
    HasInputCol
  20. final def getMinDocFreq: Int

    Definition Classes
    TextFeaturizerParams
  21. final def getMinTokenLength: Int

    Definition Classes
    TextFeaturizerParams
  22. final def getNGramLength: Int

    Definition Classes
    TextFeaturizerParams
  23. final def getNumFeatures: Int

    Definition Classes
    TextFeaturizerParams
  24. final def getOrDefault[T](param: Param[T]): T
    Definition Classes
    Params
  25. def getOutputCol: String

    Definition Classes
    HasOutputCol
  26. def getParam(paramName: String): Param[Any]
    Definition Classes
    Params
  27. def getParamInfo(p: Param[_]): ParamInfo[_]
    Definition Classes
    BaseWrappable
  28. final def getStopWords: String

    Definition Classes
    TextFeaturizerParams
  29. final def getToLowercase: Boolean

    Definition Classes
    TextFeaturizerParams
  30. final def getTokenizerGaps: Boolean

    Definition Classes
    TextFeaturizerParams
  31. final def getTokenizerPattern: String

    Definition Classes
    TextFeaturizerParams
  32. final def getUseIDF: Boolean

    Definition Classes
    TextFeaturizerParams
  33. final def getUseNGram: Boolean

    Definition Classes
    TextFeaturizerParams
  34. final def getUseStopWordsRemover: Boolean

    Definition Classes
    TextFeaturizerParams
  35. final def getUseTokenizer: Boolean

    Definition Classes
    TextFeaturizerParams
  36. final def hasDefault[T](param: Param[T]): Boolean
    Definition Classes
    Params
  37. def hasParam(paramName: String): Boolean
    Definition Classes
    Params
  38. val inputCol: Param[String]

    The name of the input column

    The name of the input column

    Definition Classes
    HasInputCol
  39. final def isDefined(param: Param[_]): Boolean
    Definition Classes
    Params
  40. final def isSet(param: Param[_]): Boolean
    Definition Classes
    Params
  41. def logClass(featureName: String): Unit
    Definition Classes
    SynapseMLLogging
  42. def logFit[T](f: ⇒ T, columns: Int): T
    Definition Classes
    SynapseMLLogging
  43. def logTransform[T](f: ⇒ T, columns: Int): T
    Definition Classes
    SynapseMLLogging
  44. def logVerb[T](verb: String, f: ⇒ T, columns: Option[Int] = None): T
    Definition Classes
    SynapseMLLogging
  45. def makePyFile(conf: CodegenConfig): Unit
    Definition Classes
    PythonWrappable
  46. def makeRFile(conf: CodegenConfig): Unit
    Definition Classes
    RWrappable
  47. val minDocFreq: IntParam

    Minimum number of documents in which a term should appear.

    Minimum number of documents in which a term should appear.

    Definition Classes
    TextFeaturizerParams
  48. val minTokenLength: IntParam

    Minumum token length; must be 0 or greater.

    Minumum token length; must be 0 or greater.

    Definition Classes
    TextFeaturizerParams
  49. val nGramLength: IntParam

    The size of the Ngrams

    The size of the Ngrams

    Definition Classes
    TextFeaturizerParams
  50. val numFeatures: IntParam

    Set the number of features to hash each document to

    Set the number of features to hash each document to

    Definition Classes
    TextFeaturizerParams
  51. val outputCol: Param[String]

    The name of the output column

    The name of the output column

    Definition Classes
    HasOutputCol
  52. lazy val params: Array[Param[_]]
    Definition Classes
    Params
  53. def pyAdditionalMethods: String
    Definition Classes
    PythonWrappable
  54. def pyInitFunc(): String
    Definition Classes
    PythonWrappable
  55. def save(path: String): Unit
    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  56. final def set[T](param: Param[T], value: T): TextFeaturizer.this.type
    Definition Classes
    Params
  57. def setBinary(value: Boolean): TextFeaturizer.this.type

  58. def setCaseSensitiveStopWords(value: Boolean): TextFeaturizer.this.type

  59. def setDefaultStopWordLanguage(value: String): TextFeaturizer.this.type

  60. def setInputCol(value: String): TextFeaturizer.this.type

    Definition Classes
    HasInputCol
  61. def setMinDocFreq(value: Int): TextFeaturizer.this.type

  62. def setMinTokenLength(value: Int): TextFeaturizer.this.type

  63. def setNGramLength(value: Int): TextFeaturizer.this.type

  64. def setNumFeatures(value: Int): TextFeaturizer.this.type

  65. def setOutputCol(value: String): TextFeaturizer.this.type

    Definition Classes
    HasOutputCol
  66. def setStopWords(value: String): TextFeaturizer.this.type

  67. def setToLowercase(value: Boolean): TextFeaturizer.this.type

  68. def setTokenizerGaps(value: Boolean): TextFeaturizer.this.type

  69. def setTokenizerPattern(value: String): TextFeaturizer.this.type

  70. def setUseIDF(value: Boolean): TextFeaturizer.this.type

  71. def setUseNGram(value: Boolean): TextFeaturizer.this.type

  72. def setUseStopWordsRemover(value: Boolean): TextFeaturizer.this.type

  73. def setUseTokenizer(value: Boolean): TextFeaturizer.this.type
  74. val stopWords: Param[String]

    The words to be filtered out.

    The words to be filtered out. This is a comma separated list of words, encoded as a single string. For example, "a, the, and"

    Definition Classes
    TextFeaturizerParams
  75. val toLowercase: BooleanParam

    Indicates whether to convert all characters to lowercase before tokenizing.

    Indicates whether to convert all characters to lowercase before tokenizing.

    Definition Classes
    TextFeaturizerParams
  76. def toString(): String
    Definition Classes
    Identifiable → AnyRef → Any
  77. val tokenizerGaps: BooleanParam

    Indicates whether the regex splits on gaps (true) or matches tokens (false)

    Indicates whether the regex splits on gaps (true) or matches tokens (false)

    Definition Classes
    TextFeaturizerParams
  78. val tokenizerPattern: Param[String]

    Regex pattern used to match delimiters if gaps (true) or tokens (false)

    Regex pattern used to match delimiters if gaps (true) or tokens (false)

    Definition Classes
    TextFeaturizerParams
  79. def transformSchema(schema: StructType): StructType
    Definition Classes
    TextFeaturizer → PipelineStage
  80. val uid: String
    Definition Classes
    TextFeaturizerSynapseMLLogging → Identifiable
  81. val useIDF: BooleanParam

    Scale the Term Frequencies by IDF when set to true

    Scale the Term Frequencies by IDF when set to true

    Definition Classes
    TextFeaturizerParams
  82. val useNGram: BooleanParam

    Enumerate N grams when set

    Enumerate N grams when set

    Definition Classes
    TextFeaturizerParams
  83. val useStopWordsRemover: BooleanParam

    Indicates whether to remove stop words from tokenized data.

    Indicates whether to remove stop words from tokenized data.

    Definition Classes
    TextFeaturizerParams
  84. val useTokenizer: BooleanParam

    Tokenize the input when set to true

    Tokenize the input when set to true

    Definition Classes
    TextFeaturizerParams
  85. def write: MLWriter
    Definition Classes
    DefaultParamsWritable → MLWritable