class UnrollBinaryImage extends Transformer with HasInputCol with HasOutputCol with Wrappable with DefaultParamsWritable with SynapseMLLogging
Converts the representation of an m X n pixel image to an m * n vector of Doubles
The input column name is assumed to be "image", the output column name is "<uid>_output"
Linear Supertypes
Ordering
- Alphabetic
- By Inheritance
Inherited
- UnrollBinaryImage
- SynapseMLLogging
- DefaultParamsWritable
- MLWritable
- Wrappable
- RWrappable
- PythonWrappable
- BaseWrappable
- HasOutputCol
- HasInputCol
- Transformer
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
Visibility
- Public
- All
Instance Constructors
Value Members
-
final
def
clear(param: Param[_]): UnrollBinaryImage.this.type
- Definition Classes
- Params
-
def
copy(extra: ParamMap): Transformer
- Definition Classes
- UnrollBinaryImage → Transformer → PipelineStage → Params
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- def getHeight: Int
-
def
getInputCol: String
- Definition Classes
- HasInputCol
- def getNChannels: Int
-
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
def
getOutputCol: String
- Definition Classes
- HasOutputCol
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
-
def
getParamInfo(p: Param[_]): ParamInfo[_]
- Definition Classes
- BaseWrappable
- def getWidth: Int
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
- val height: IntParam
-
val
inputCol: Param[String]
The name of the input column
The name of the input column
- Definition Classes
- HasInputCol
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
def
logClass(featureName: String): Unit
- Definition Classes
- SynapseMLLogging
-
def
logFit[T](f: ⇒ T, columns: Int): T
- Definition Classes
- SynapseMLLogging
-
def
logTransform[T](f: ⇒ T, columns: Int): T
- Definition Classes
- SynapseMLLogging
-
def
logVerb[T](verb: String, f: ⇒ T, columns: Option[Int] = None): T
- Definition Classes
- SynapseMLLogging
-
def
makePyFile(conf: CodegenConfig): Unit
- Definition Classes
- PythonWrappable
-
def
makeRFile(conf: CodegenConfig): Unit
- Definition Classes
- RWrappable
- val nChannels: IntParam
-
val
outputCol: Param[String]
The name of the output column
The name of the output column
- Definition Classes
- HasOutputCol
-
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
def
pyAdditionalMethods: String
- Definition Classes
- PythonWrappable
-
def
pyInitFunc(): String
- Definition Classes
- PythonWrappable
-
def
save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
final
def
set[T](param: Param[T], value: T): UnrollBinaryImage.this.type
- Definition Classes
- Params
- def setHeight(v: Int): UnrollBinaryImage.this.type
-
def
setInputCol(value: String): UnrollBinaryImage.this.type
- Definition Classes
- HasInputCol
- def setNChannels(v: Int): UnrollBinaryImage.this.type
-
def
setOutputCol(value: String): UnrollBinaryImage.this.type
- Definition Classes
- HasOutputCol
- def setWidth(v: Int): UnrollBinaryImage.this.type
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
def
transform(dataset: Dataset[_]): DataFrame
- Definition Classes
- UnrollBinaryImage → Transformer
-
def
transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" )
-
def
transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" ) @varargs()
-
def
transformSchema(schema: StructType): StructType
- Definition Classes
- UnrollBinaryImage → PipelineStage
-
val
uid: String
- Definition Classes
- UnrollBinaryImage → SynapseMLLogging → Identifiable
- val width: IntParam
-
def
write: MLWriter
- Definition Classes
- DefaultParamsWritable → MLWritable