t

com.microsoft.azure.synapse.ml.lightgbm

LightGBMModelMethods

trait LightGBMModelMethods extends LightGBMModelParams with Logging

Contains common LightGBM model methods across all LightGBM learner types.

Linear Supertypes
Logging, LightGBMModelParams, Wrappable, RWrappable, PythonWrappable, BaseWrappable, Params, Serializable, Serializable, Identifiable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. LightGBMModelMethods
  2. Logging
  3. LightGBMModelParams
  4. Wrappable
  5. RWrappable
  6. PythonWrappable
  7. BaseWrappable
  8. Params
  9. Serializable
  10. Serializable
  11. Identifiable
  12. AnyRef
  13. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Abstract Value Members

  1. abstract def copy(extra: ParamMap): Params
    Definition Classes
    Params
  2. abstract val uid: String
    Definition Classes
    Identifiable

Concrete Value Members

  1. final def clear(param: Param[_]): LightGBMModelMethods.this.type
    Definition Classes
    Params
  2. def explainParam(param: Param[_]): String
    Definition Classes
    Params
  3. def explainParams(): String
    Definition Classes
    Params
  4. final def extractParamMap(): ParamMap
    Definition Classes
    Params
  5. final def extractParamMap(extra: ParamMap): ParamMap
    Definition Classes
    Params
  6. final def get[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  7. def getBoosterBestIteration(): Int

    Public method to get the best iteration from the booster.

    Public method to get the best iteration from the booster.

    returns

    The best iteration, if early stopping was triggered.

  8. def getBoosterNumClasses(): Int

    Public method to get the number of classes from the booster.

    Public method to get the number of classes from the booster.

    returns

    The number of classes.

  9. def getBoosterNumFeatures(): Int

    Public method to get the number of features from the booster.

    Public method to get the number of features from the booster.

    returns

    The number of features.

  10. def getBoosterNumTotalIterations(): Int

    Public method to get the total number of iterations trained.

    Public method to get the total number of iterations trained.

    returns

    The total number of iterations trained.

  11. def getBoosterNumTotalModel(): Int

    Public method to get the total number of models trained.

    Public method to get the total number of models trained. Note this may be larger than the number of iterations, since in multiclass a model is trained per class for each iteration.

    returns

    The total number of models.

  12. final def getDefault[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  13. def getDenseFeatureShaps(features: Array[Double]): Array[Double]

    Public method for pyspark API to get the dense local SHAP feature importance values for an instance.

    Public method for pyspark API to get the dense local SHAP feature importance values for an instance.

    features

    The local instance or row to compute the SHAP values for.

    returns

    The local feature importance values.

  14. def getFeatureImportances(importanceType: String): Array[Double]

    Public method to get the global feature importance values.

    Public method to get the global feature importance values.

    importanceType

    split or gini

    returns

    The global feature importance values.

  15. def getFeatureShaps(features: Vector): Array[Double]

    Public method to get the vector local SHAP feature importance values for an instance.

    Public method to get the vector local SHAP feature importance values for an instance.

    features

    The local instance or row to compute the SHAP values for.

    returns

    The local feature importance values.

  16. def getLightGBMBooster: LightGBMBooster
    Definition Classes
    LightGBMModelParams
  17. def getModel: LightGBMBooster

    Alias for same method

    Alias for same method

    returns

    The LightGBM Booster.

    Definition Classes
    LightGBMModelParams
  18. def getNativeModel(): String

    Gets the native model serialized representation as a string.

  19. def getNumIterations: Int
    Definition Classes
    LightGBMModelParams
  20. final def getOrDefault[T](param: Param[T]): T
    Definition Classes
    Params
  21. def getParam(paramName: String): Param[Any]
    Definition Classes
    Params
  22. def getParamInfo(p: Param[_]): ParamInfo[_]
    Definition Classes
    BaseWrappable
  23. def getSparseFeatureShaps(size: Int, indices: Array[Int], values: Array[Double]): Array[Double]

    Public method for pyspark API to get the sparse local SHAP feature importance values for an instance.

    Public method for pyspark API to get the sparse local SHAP feature importance values for an instance.

    returns

    The local feature importance values.

  24. def getStartIteration: Int
    Definition Classes
    LightGBMModelParams
  25. final def hasDefault[T](param: Param[T]): Boolean
    Definition Classes
    Params
  26. def hasParam(paramName: String): Boolean
    Definition Classes
    Params
  27. final def isDefined(param: Param[_]): Boolean
    Definition Classes
    Params
  28. final def isSet(param: Param[_]): Boolean
    Definition Classes
    Params
  29. val lightGBMBooster: LightGBMBoosterParam
    Definition Classes
    LightGBMModelParams
  30. def makePyFile(conf: CodegenConfig): Unit
    Definition Classes
    PythonWrappable
  31. def makeRFile(conf: CodegenConfig): Unit
    Definition Classes
    RWrappable
  32. val numIterations: IntParam
    Definition Classes
    LightGBMModelParams
  33. lazy val params: Array[Param[_]]
    Definition Classes
    Params
  34. def pyAdditionalMethods: String
    Definition Classes
    PythonWrappable
  35. def pyInitFunc(): String
    Definition Classes
    PythonWrappable
  36. def saveNativeModel(filename: String, overwrite: Boolean): Unit

    Saves the native model serialized representation to file.

    Saves the native model serialized representation to file.

    filename

    The name of the file to save the model to

    overwrite

    Whether to overwrite if the file already exists

  37. final def set[T](param: Param[T], value: T): LightGBMModelMethods.this.type
    Definition Classes
    Params
  38. def setLightGBMBooster(value: LightGBMBooster): LightGBMModelMethods.this.type
    Definition Classes
    LightGBMModelParams
  39. def setNumIterations(value: Int): LightGBMModelMethods.this.type
    Definition Classes
    LightGBMModelParams
  40. def setStartIteration(value: Int): LightGBMModelMethods.this.type
    Definition Classes
    LightGBMModelParams
  41. val startIteration: IntParam
    Definition Classes
    LightGBMModelParams
  42. def toString(): String
    Definition Classes
    Identifiable → AnyRef → Any